Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.
NASA Logo
Ocean Color Science Software

ocssw V2022
MDN.metrics Namespace Reference

Functions

def validate_shape (func)
 
def only_finite (func)
 
def only_positive (func)
 
def label (name)
 
def rmse (y, y_hat)
 
def rmsle (y, y_hat)
 
def nrmse (y, y_hat)
 
def mae (y, y_hat)
 
def mape (y, y_hat)
 
def leqz (y, y_hat=None)
 
def leqznan (y, y_hat=None)
 
def mdsa (y, y_hat)
 
def msa (y, y_hat)
 
def sspb (y, y_hat)
 
def bias (y, y_hat)
 
def r_squared (y, y_hat)
 
def slope (y, y_hat)
 
def intercept (y, y_hat)
 
def mwr (y, y_hat, y_bench)
 
def performance (key, y, y_hat, metrics=[mdsa, sspb, slope, msa, rmsle, mae, leqznan], csv=False)
 

Function Documentation

◆ bias()

def MDN.metrics.bias (   y,
  y_hat 
)
Mean Bias 

Definition at line 155 of file metrics.py.

◆ intercept()

def MDN.metrics.intercept (   y,
  y_hat 
)
Locarithmic intercept 

Definition at line 181 of file metrics.py.

◆ label()

def MDN.metrics.label (   name)
Label a function to aid in printing 

Definition at line 43 of file metrics.py.

◆ leqz()

def MDN.metrics.leqz (   y,
  y_hat = None 
)
Less than or equal to zero (y_hat) 

Definition at line 111 of file metrics.py.

◆ leqznan()

def MDN.metrics.leqznan (   y,
  y_hat = None 
)
Less than or equal to zero (y_hat) 

Definition at line 119 of file metrics.py.

◆ mae()

def MDN.metrics.mae (   y,
  y_hat 
)
Mean Absolute Error 

Definition at line 97 of file metrics.py.

◆ mape()

def MDN.metrics.mape (   y,
  y_hat 
)
Mean Absolute Percentage Error 

Definition at line 104 of file metrics.py.

◆ mdsa()

def MDN.metrics.mdsa (   y,
  y_hat 
)
Median Symmetric Accuracy 

Definition at line 128 of file metrics.py.

◆ msa()

def MDN.metrics.msa (   y,
  y_hat 
)
Mean Symmetric Accuracy 

Definition at line 137 of file metrics.py.

◆ mwr()

def MDN.metrics.mwr (   y,
  y_hat,
  y_bench 
)
Model Win Rate - Percent of samples in which model has a closer 
estimate than the benchmark.
    y: true, y_hat: model, y_bench: benchmark 


Definition at line 189 of file metrics.py.

◆ nrmse()

def MDN.metrics.nrmse (   y,
  y_hat 
)
Normalized Root Mean Squared Error 

Definition at line 90 of file metrics.py.

◆ only_finite()

def MDN.metrics.only_finite (   func)
Decorator to remove samples which are nan in any input array 

Definition at line 19 of file metrics.py.

◆ only_positive()

def MDN.metrics.only_positive (   func)
Decorator to remove samples which are zero/negative in any input array 

Definition at line 31 of file metrics.py.

◆ performance()

def MDN.metrics.performance (   key,
  y,
  y_hat,
  metrics = [mdsasspbslopemsarmslemaeleqznan],
  csv = False 
)
Return a string containing performance using various metrics. 
    y should be the true value, y_hat the estimated value. 

Definition at line 208 of file metrics.py.

◆ r_squared()

def MDN.metrics.r_squared (   y,
  y_hat 
)
Logarithmic R^2 

Definition at line 163 of file metrics.py.

◆ rmse()

def MDN.metrics.rmse (   y,
  y_hat 
)
Root Mean Squared Error 

Definition at line 75 of file metrics.py.

◆ rmsle()

def MDN.metrics.rmsle (   y,
  y_hat 
)
Root Mean Squared Logarithmic Error 

Definition at line 83 of file metrics.py.

◆ slope()

def MDN.metrics.slope (   y,
  y_hat 
)
Logarithmic slope 

Definition at line 172 of file metrics.py.

◆ sspb()

def MDN.metrics.sspb (   y,
  y_hat 
)
Symmetric Signed Percentage Bias 

Definition at line 146 of file metrics.py.

◆ validate_shape()

def MDN.metrics.validate_shape (   func)
Decorator to flatten all function input arrays, and ensure shapes are the same 

Definition at line 7 of file metrics.py.