The Ocean Biology Processing Group (OBPG) intiated a full-mission ocean color reprocessing of the MODIS-Terra dataset in November 2022. This reprocessing is part of a multi-mission effort to update the instrument calibrations, vicarious calibration, and product and algorithm changes. Sensor-independent changes are detailed in the R2022.0 Ocean Color Reprocessing General Description. Here we describe the MODIS-Terra sensor-specific details of the reprocessing, and provide an assessment of data quality and impact relative to the previous R2018 MODIS-Terra reprocessing.
In this reprocessing, the instrument calibration was updated for the VIIRS instrument to utilize the additional on-board (solar/lunar) calibration measurements collected since the R2018.0 reprocessings, and to incorporate advancements in modeling of sensor radiometric degradation from the on-board calibrators.
MODIS-Terra utilizes a vicarious calibration to the Marine Optical Buoy (MOBY) to minimize residual error in instrument absolute calibration and systematic bias in the atmospheric correction algorithm. As part of the R2018 reprocessing, the MOBY time-series was also reprocessed to incorporate an updated protocol for calculating the sea-air transmission coefficient that is used to calculate water leaving radiances (Lw) from MOBY measurements.
Historical data processing protocols recommended assuming a constant transmission coefficient for calculating water leaving radiances (Lw) from underwater measurements of upwelling radiance (Lu0-). The constant value 0.543 had been an accepted simplification, calculated using inputs of 500 nm, 25 C, and 35 ppt. However, using a fixed value regardless of wavelength resulted in a small spectral bias across Lw spectra, causing MOBY data to be approximately 1.3% too high at 380 nm, decreasing inversely with wavelength to be approximately 1.1% too low at 700 nm. Note that this was a general data processing issue, not a problem with MOBY.
This issue and its specific impacts on MOBY data were described by Voss and Flora (2017), and the refined advice for calculating the sea-air transmission coefficient was also included in the most recent update to community-based AOP protocols (Zibordi et al. 2019). Based on those recommendations, the MOBY time-series was reprocessed. The R2018 reprocessing included an updated sea-air transmission coefficient calculation that incorporated wavelength-specific inputs as well as temperature measurements to remove the described bias and improve the accuracy of satellite retrievals through the updated vicarious calibration.
Changes in products and algorithms have been made for all the missions including Terra in this reprocessing, including: chlorophyll, particulate inorganic carbon (PIC), raman scattering, absorption and backscattering spectra for water, ancillary data sources (for ozone, sea surface temperature, land/water mask and bathymetery), multi-scattering Epsilon aerosol model and optical properties determination.,
To assess the impact of this R2022.0 reprocessing, a comparative timeseries analysis was perfomed. The impact of all calibration, product and algorithm, and ancillary data changes on chlorophyll and remote sensing reflectance of global deep water (>1000m) is shown in Fig. 1 and Fig. 2. Chlorophyll and Rrs time series generated for MODIS-Terra and MODIS-Aqua using the R2022 configuration is shown in Fig. 1 (left panels). Their ratios are shown on the right panels. The comparison of results between R2022 and R2018 reprocessing are shown in Fig. 2. Overall, the differences in Chlorophyll and remote sensing reflectance between MODIS-Terra and MODIS-Aqua R2022 are within 10%, and these products from these two most recent reprocessings are consistent.
Validation of the chlorophyll, apparent optical properties (Rrs, Kd490), inherent optical properties (a_giop, aph_giop, adg_giop, bbp_giop), particulate organic/inorganic carbon (POC/PIC), and photosynthetically available radiation (PAR) retrievals was performed relative to all available match-ups from SeaBASS and the Aerosol Robotic Network - Ocean Color (AERONET-OC). Statistical analysis, scatter plots and frequency distribution comparisons of the satellite to in situ match-ups are provided below.
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | MODIS-Terra Range | In situ Range |
---|---|---|---|---|---|
chlor_a | 2267 | 1.07929* | 1.71417* | 0.02212, 72.85196 | 0.00900, 151.30000 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | MODIS-Terra Range | In situ Range |
---|---|---|---|---|---|
Rrs412 | 6183 | -0.00031 | 0.00116 | -0.00516, 0.03121 | -0.00000, 0.03927 |
Rrs443 | 6507 | -0.00016 | 0.00088 | -0.00443, 0.03954 | 0.00007, 0.04488 |
Rrs488 | 6127 | -0.00057 | 0.00088 | -0.00005, 0.04859 | 0.00039, 0.05464 |
Rrs531 | 3725 | -0.00060 | 0.00086 | 0.00083, 0.04133 | 0.00113, 0.04763 |
Rrs547 | 5606 | -0.00064 | 0.00091 | 0.00088, 0.03752 | 0.00080, 0.04210 |
Rrs555 | 5650 | -0.00085 | 0.00102 | 0.00064, 0.03339 | 0.00050, 0.04211 |
Rrs667 | 5746 | -0.00020 | 0.00036 | -0.00069, 0.01970 | -0.00000, 0.02154 |
Rrs678 | 516 | -0.00018 | 0.00037 | -0.00053, 0.01046 | 0.00004, 0.00965 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | MODIS-Terra Range | In situ Range |
---|---|---|---|---|---|
kd490 | 626 | 1.06968* | 1.29197* | 0.02180, 6.40000 | 0.01383, 1.59180 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | Aqua Range | In situ Range |
---|---|---|---|---|---|
a_giop412 | 199 | 0.80596* | 1.56804* | 0.01565, 1.57042 | 0.01492, 1.48437 |
a_giop443 | 199 | 0.78931* | 1.41989* | 0.01599, 1.23717 | 0.01553, 1.12670 |
a_giop488 | 199 | 0.78390* | 1.34566* | 0.01961, 0.78620 | 0.01956, 0.60427 |
a_giop531 | 199 | 0.84811* | 1.23294* | 0.04024, 0.48792 | 0.04553, 0.37732 |
a_giop547 | 199 | 0.85589* | 1.21759* | 0.02744, 0.42236 | 0.05789, 0.29862 |
a_giop555 | 199 | 0.89161* | 1.16857* | 0.03510, 0.38199 | 0.06102, 0.27676 |
a_giop667 | 199 | 0.99748* | 1.04826* | 0.16395, 0.96838 | 0.43053, 0.79128 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | Aqua Range | In situ Range |
---|---|---|---|---|---|
aph_giop412 | 209 | 0.82185* | 1.66731* | 0.00233, 0.82421 | 0.00141, 0.47654 |
aph_giop443 | 211 | 0.85452* | 1.59815* | 0.00311, 0.93034 | 0.00193, 0.54002 |
aph_giop488 | 211 | 0.91611* | 1.55841* | 0.00221, 0.63829 | 0.00102, 0.28555 |
aph_giop531 | 210 | 0.90931* | 1.69064* | 0.00050, 0.36753 | 0.00016, 0.15537 |
aph_giop547 | 206 | 1.03440* | 1.76493* | 0.00030, 0.30275 | 0.00006, 0.11235 |
aph_giop555 | 205 | 0.99191* | 1.77567* | 0.00020, 0.26505 | 0.00004, 0.09717 |
aph_giop667 | 209 | 1.13731* | 1.74573* | 0.00080, 0.52916 | 0.00038, 0.33381 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | Aqua Range | In situ Range |
---|---|---|---|---|---|
adg_giop412 | 197 | 0.72827* | 1.96579* | 0.00698, 1.72101 | 0.00674, 1.18787 |
adg_giop443 | 197 | 0.65554* | 2.08122* | 0.00376, 0.98503 | 0.00418, 0.71333 |
adg_giop488 | 197 | 0.55519* | 2.32123* | 0.00167, 0.43820 | 0.00218, 0.34561 |
adg_giop531 | 197 | 0.44876* | 2.69219* | 0.00082, 0.20208 | 0.00126, 0.20564 |
adg_giop547 | 197 | 0.44269* | 2.78596* | 0.00056, 0.15152 | 0.00094, 0.16032 |
adg_giop555 | 197 | 0.40969* | 2.92806* | 0.00050, 0.13119 | 0.00085, 0.15071 |
adg_giop667 | 197 | 0.22572* | 4.82567* | 0.00009, 0.01745 | 0.00011, 0.04039 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | MODIS-Terra Range | In situ Range |
---|---|---|---|---|---|
bbp_giop412 | 159 | 0.87578* | 1.40350* | 0.00093, 0.00960 | 0.00063, 0.01606 |
bbp_giop443 | 159 | 0.87632* | 1.39425* | 0.00085, 0.00886 | 0.00056, 0.01555 |
bbp_giop488 | 159 | 0.87343* | 1.38610* | 0.00075, 0.00797 | 0.00049, 0.01489 |
bbp_giop531 | 159 | 0.86715* | 1.38735* | 0.00067, 0.00742 | 0.00044, 0.01438 |
bbp_giop547 | 159 | 0.87239* | 1.38679* | 0.00064, 0.00733 | 0.00042, 0.01415 |
bbp_giop555 | 159 | 0.86794* | 1.38912* | 0.00063, 0.00729 | 0.00041, 0.01410 |
bbp_giop667 | 159 | 0.85862* | 1.41248* | 0.00046, 0.00676 | 0.00031, 0.01303 |
bbp_giop678 | 3 | 0.78852* | 1.26820* | 0.00058, 0.00368 | 0.00076, 0.00480 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | Aqua Range | In situ Range |
---|---|---|---|---|---|
par | 362 | 5.53442 | 5.53936 | 21.72650, 64.50283 | 8.89095, 61.75359 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | Aqua Range | In situ Range |
---|---|---|---|---|---|
pic | 70 | 0.20271* | 5.48211* | 0.00001, 0.00318 | 0.00002, 0.02753 |
Product Name | # | Mean Bias | Mean Absolute Error (MAE) | MODIS-Terra Range | In situ Range |
---|---|---|---|---|---|
poc | 310 | 1.04007* | 1.41515* | 20.72490, 3464.74996 | 21.30000, 796.91229 |
Ahmad, Ziauddin, Bryan A. Franz, Charles R. McClain, Ewa J. Kwiatkowska, Jeremy Werdell, Eric P. Shettle, and Brent N. Holben. 2010. “New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans.” Applied Optics 49 (29): 5545. https://doi.org/10.1364/AO.49.005545.
Ahmad, Ziauddin, and Bryan A. Franz (2018), Uncertainty in aerosol model characterization and its impact on ocean color retrievals, in PACE Technical Report Series, Volume 6: Data Product Requirements and Error Budgets (NASA/TM-2018 – 2018-219027/ Vol. 6), edited by I. Cetinić, C. R. McClain and P. J. Werdell, NASA Goddard Space Flight Space Center Greenbelt, MD.
Balch, W. M., et al. (2005). "Calcium carbonate budgets in the surface global ocean based on MODIS data." Journal of Geophysical Research Oceans 110(C7): C07001, doi:07010.01029/02004JC002560.
GEBCO Compilation Group (2020) GEBCO 2020 Grid (doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9)
Gordon, H. R., et al. (2001). "Retrieval of coccolithophore calcite concentration from SeaWiFS imagery." Geochemical Research Letters 28(8): 1587-1590.
Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell, P. J., & Proctor, C. W. (2019). Improving satellite global chlorophyll a data products through algorithm refinement and data recovery. Journal of Geophysical Research: Oceans, 124.
McKinna, L.I.W., Werdell, P.J. and C.W. Proctor. 2016. "Implementation of an analytical Raman scattering correction for satellite ocean-color processing." Optics Express, 24(14), A1123-A1137, doi: 10.1364/OE.24.0A1123
O'Reilly, J.E., and Werdell, P. J. (2019). Chlorophyll algorithms for ocean color sensors - OC4, OC5 & OC6, Remote Sensing of Environment 229: 32-47, https://doi.org/10.1016/j.rse.2019.04.021.
Voss, K. J., & Flora, S. (2017). Spectral dependence of the seawater-air radiance transmission coefficient. Journal of Atmospheric and Oceanic Technology, 34(6), 1203-1205. https://doi.org/10.1175/JTECH-D-17-0040.1
Westberry et al. (2013) Influence if Raman scattering on ocean color inversion models, Applied Optics, 52(22), 5552-5561, https://doi.org/10.1364/AO.52.005552
Zibordi, G., Voss, K. J., Johnson, B. C., & Mueller, J. L. (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0, IOCCG, Dartmouth, NS, Canada. http://dx.doi.org/10.25607/OBP-691