New Since OCRT 2012

• No longer beta!
 – 7.0 released 22 April 2013
 – 7.0.1 released 22 October 2013
 – 7.0.2 released 14 January 2014

• Support for more missions
 – HICO
 – GOCI

• Improvements to the processing GUIs
• Coastline – Land/Water Mask
• Multi-level processor Python script
Coastline & Land/Water Mask
Multi-level Processor

![Image of a software interface](image)

Program List

<table>
<thead>
<tr>
<th>Program</th>
<th>Keep</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modis_L1A.py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l1aextract_modis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l1aextract_seawifs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>geo</td>
<td></td>
<td>ifile=/Users/dshea/ocssw/test/l2gen/A2002365234500.L1A_LAC</td>
</tr>
<tr>
<td>modis_L1B.py</td>
<td></td>
<td>ifile=/Users/dshea/ocssw/test/l2gen/A2002365234500.L1A_LAC</td>
</tr>
<tr>
<td>l1bgen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l1brsgen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l2gen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l2extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l2brsgen</td>
<td></td>
<td>prod=chlor_a apply_pal=1 outmode=2</td>
</tr>
<tr>
<td>l2bin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l3bin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smigen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Run, **Cancel**, **Apply**
Version 7.1 - coming your way

• Release to coincide (as closely as possible) with the BEAM 5.0 release and the multi-mission reprocessing (i.e. soon…)

• A new look
 – Updated icons
 – Reorganized menus

• New Features
 – Contour lines
 – Bathymetry

• Support for new netCDF4 files from OBPG

• GUI support for a “new” L3 Bin data access tool - l3bindump
The New Look
Contour Lines
Bathymetry
L3bindump

- Allows direct access to data in the L3 bin dump files (not mapped).
- Spreadsheet format:
 - Plain CSV
 - SeaBASS formatted header

<table>
<thead>
<tr>
<th>bin</th>
<th>center...</th>
<th>center...</th>
<th>north</th>
<th>south</th>
<th>west</th>
<th>east</th>
<th>n</th>
<th>N</th>
<th>sum</th>
<th>chlor...</th>
<th>chlor...</th>
<th>mean</th>
<th>stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>19500</td>
<td>39.89</td>
<td>-50.0</td>
<td>39.91</td>
<td>39.87</td>
<td>-50.0</td>
<td>-49.9</td>
<td>18</td>
<td>1</td>
<td>1.685</td>
<td>6.810</td>
<td>4.242</td>
<td>0.3973</td>
<td>0.0524</td>
</tr>
<tr>
<td>19500</td>
<td>39.89</td>
<td>-49.9</td>
<td>39.91</td>
<td>39.87</td>
<td>-49.9</td>
<td>-49.9</td>
<td>16</td>
<td>1</td>
<td>1.550</td>
<td>6.121</td>
<td>4.000</td>
<td>0.3875</td>
<td>0.0554</td>
</tr>
<tr>
<td>19506</td>
<td>39.93</td>
<td>-50.0</td>
<td>39.95</td>
<td>39.91</td>
<td>-50.0</td>
<td>-50.0</td>
<td>12</td>
<td>1</td>
<td>1.608</td>
<td>7.608</td>
<td>3.464</td>
<td>0.4644</td>
<td>0.0657</td>
</tr>
<tr>
<td>19506</td>
<td>39.93</td>
<td>-49.9</td>
<td>39.95</td>
<td>39.91</td>
<td>-50.0</td>
<td>-49.9</td>
<td>14</td>
<td>1</td>
<td>1.729</td>
<td>8.091</td>
<td>3.741</td>
<td>0.4621</td>
<td>0.0538</td>
</tr>
<tr>
<td>19506</td>
<td>39.93</td>
<td>-49.9</td>
<td>39.95</td>
<td>39.91</td>
<td>-49.9</td>
<td>-49.9</td>
<td>17</td>
<td>1</td>
<td>1.863</td>
<td>8.579</td>
<td>4.123</td>
<td>0.4519</td>
<td>0.0641</td>
</tr>
<tr>
<td>19506</td>
<td>39.93</td>
<td>-49.9</td>
<td>39.95</td>
<td>39.91</td>
<td>-49.9</td>
<td>-49.9</td>
<td>12</td>
<td>1</td>
<td>1.525</td>
<td>6.802</td>
<td>3.464</td>
<td>0.4404</td>
<td>0.0510</td>
</tr>
<tr>
<td>19513</td>
<td>39.97</td>
<td>-50.0</td>
<td>40.00</td>
<td>39.95</td>
<td>-50.0</td>
<td>-49.9</td>
<td>3</td>
<td>1</td>
<td>4.918</td>
<td>1.400</td>
<td>1.732</td>
<td>0.2839</td>
<td>0.0170</td>
</tr>
<tr>
<td>19513</td>
<td>39.97</td>
<td>-49.9</td>
<td>40.00</td>
<td>39.95</td>
<td>-49.9</td>
<td>-49.9</td>
<td>9</td>
<td>1</td>
<td>9.889</td>
<td>3.279</td>
<td>3.000</td>
<td>0.3296</td>
<td>0.0269</td>
</tr>
<tr>
<td>19513</td>
<td>39.97</td>
<td>-49.9</td>
<td>40.00</td>
<td>39.95</td>
<td>-49.9</td>
<td>-49.9</td>
<td>10</td>
<td>1</td>
<td>1.074</td>
<td>3.657</td>
<td>3.162</td>
<td>0.3398</td>
<td>0.0145</td>
</tr>
<tr>
<td>19513</td>
<td>39.97</td>
<td>-49.8</td>
<td>40.00</td>
<td>39.95</td>
<td>-49.8</td>
<td>-49.8</td>
<td>1</td>
<td>1</td>
<td>3.340</td>
<td>1.115</td>
<td>1.000</td>
<td>0.3340</td>
<td>0.0000</td>
</tr>
<tr>
<td>19520</td>
<td>40.02</td>
<td>-49.9</td>
<td>40.04</td>
<td>40.00</td>
<td>-50.0</td>
<td>-49.9</td>
<td>18</td>
<td>1</td>
<td>1.412</td>
<td>4.718</td>
<td>4.242</td>
<td>0.3329</td>
<td>0.0203</td>
</tr>
<tr>
<td>19520</td>
<td>40.02</td>
<td>-49.8</td>
<td>40.04</td>
<td>40.00</td>
<td>-49.9</td>
<td>-49.9</td>
<td>18</td>
<td>1</td>
<td>1.419</td>
<td>4.754</td>
<td>4.242</td>
<td>0.3345</td>
<td>0.0114</td>
</tr>
<tr>
<td>19520</td>
<td>40.02</td>
<td>-49.8</td>
<td>40.04</td>
<td>40.00</td>
<td>-49.8</td>
<td>-49.8</td>
<td>15</td>
<td>1</td>
<td>1.278</td>
<td>4.238</td>
<td>3.872</td>
<td>0.3301</td>
<td>0.0213</td>
</tr>
<tr>
<td>19526</td>
<td>40.06</td>
<td>-49.9</td>
<td>40.08</td>
<td>40.04</td>
<td>-50.0</td>
<td>-49.9</td>
<td>2</td>
<td>1</td>
<td>4.439</td>
<td>1.393</td>
<td>1.414</td>
<td>0.3138</td>
<td>0.0080</td>
</tr>
<tr>
<td>19526</td>
<td>40.06</td>
<td>-49.9</td>
<td>40.08</td>
<td>40.04</td>
<td>-49.9</td>
<td>-49.9</td>
<td>3</td>
<td>1</td>
<td>5.023</td>
<td>1.461</td>
<td>1.732</td>
<td>0.2900</td>
<td>0.0204</td>
</tr>
<tr>
<td>19526</td>
<td>40.06</td>
<td>-49.8</td>
<td>40.08</td>
<td>40.04</td>
<td>-49.8</td>
<td>-49.8</td>
<td>2</td>
<td>1</td>
<td>4.374</td>
<td>1.354</td>
<td>1.414</td>
<td>0.3093</td>
<td>0.0107</td>
</tr>
</tbody>
</table>
Video Tutorials

• Hosted on YouTube in an OBPG channel under the NASA Goddard channel
• 5-minute (or less) snippets

• Basic file (product) load and display
 – view product info
 – color manipulation
 – pixel info
 – Session Management

• Export data
 – GeoTIFF, HDF5, netCDF, flat binary (DIMAP), CSV, Shapfile, Google KML, Image formats

• View/create masks
 – Add coastline/landmask
 – create masks from data/flags
 – add geometries

• Statistics; Histogram; Scatterplot; Profile
• Band Math
• Create Filtered Bands
• Collocation Tool
• Spatial Subset Tool

• Point Data
 – Pins
 – Vector data import
 – Correlative data (ShipTrack)
 – Pixel Extraction

• Mosaic Tool
• Navigation
 – Ground Control Points
 – Attach geo-coding

• Data Processors - one per program
• Image Analysis
 – K-Means Cluster Analysis
 – EM Cluster Analysis
 – Spectral Unmixing
 – Time-series Analysis

• OPeNDAP tool
• Graph Processing Tool
What the future will bring

- **Client/Server Processing**
 - Allow local SeaDAS to run processing on a remote server
 - Provide capability for processing on Windows

- Python API for extending SeaDAS (well, BEAM, too – this is part of the BEAM 5 base)
The ESA Sentinel Toolbox... and how it will affect SeaDAS

• One software, three toolboxes
 – one for each Sentinel mission
 – SeaDAS would be a fourth “toolbox”

• Common source code version control and code repositories for core program

• Common plug-in repositories

• Common installer software

• Common software distribution channels
...and thanks! go out to ...

- The SeaDAS Irregulars
 - Aynur Abdurazik
 - Matt Elliot
 - Danny Knowles
 - Don Shea
- The BEAM developers at Brockmann Consult, Hamburg, Germany
An Example Tutorial