Community Plan for NASA Ocean Biology & Biogeochemistry Program

- A plan for the NASA OBB program
- **Science to Requirements to Strategies to Missions**
- Community plan
- Intended as a “living document”
- Will be reviewed by NRC
The Four OBB Scientific Questions

- Ecosystems & Diversity
- Carbon & Biogeochemistry
- Habitats
- Hazards
Emerging Scientific Questions in Ocean Biology and Biogeochemistry Research

• How are ocean ecosystems and the biodiversity they support influenced by climate or environmental variability and change, and how will these changes occur over time?

• How do carbon and other elements transition between ocean pools and pass through the Earth System, and how do these biogeochemical fluxes impact the ocean and Earth’s climate over time?

• How (and why) is the diversity and geographical distribution of coastal marine habitats changing, and what are the implications for the well-being of human society?

• How do hazards impact the hydrography and biology of the coastal zone? How do they affect us, and can we mitigate their effects?
Ecosystems & Diversity, Carbon & Biogeochemistry, Habitats, Hazards

• Relevance:
 • changing ecosystem structure, function, distribution on synoptic to climatic time scales
 • impact on higher trophic levels (e.g., fish, reptiles, birds, mammals)

• Science:
 • Assessing biogeography in a multidisciplinary manner
 • Quantifying ocean productivity
 • Identifying plankton functional groups

• Benefits to society:
 • Assessing ecosystem health, services
 • Understanding nutrient and carbon sinks/sources
 • Improving human welfare
• Relevance:
 • Impacts & feedbacks of climate change on global biogeochemistry
 • Impacts of humans

• Science:
 • Assessing primary producer biomass
 • Estimating carbon fluxes
 • Understanding climate controls

• Benefits to society:
 • Assessing/verifying ocean carbon credit trading & mitigation strategies
 • Helping manage human services in a changing climate
• Relevance:
 • Growing human population density & dependence on ocean resources
 • Changing coastal environments

• Science:
 • Classification of regional marine habitats & coastal landscapes
 • Measuring impacts of land use
 • Understanding climate control
 • Assessing fisheries & shelf ecosystem resilience
 • Assessing red tides and coral reef health

• Benefits to society:
 • Basis for ecosystem-based management
 • Improving human health, recreation, & commerce
Ecosystems & Diversity, Carbon & Biogeochemistry, Habitats, Hazards

- Relevance:
 - Significant risk to human life and property
 - Protection of natural environments

- Science:
 - Acute hazards:
 - Tsunamis & Hurricanes
 - Pollution
 - Harmful Algal Blooms
 - Chronic Hazards:
 - Ocean warming and sea level rise
 - Ocean acidification
 - Eutrophication

- Benefits to society:
 - Forecasting of hazards
 - Disaster preparedness/security
 - Mitigation tools
Science Requirements & Mission Themes

- Global separation of in-water constituents & advanced atmospheric correction
- High temporal & spatial resolution coastal measurements
- Active assessments of plant physiology & functional composition
- Mixed layer depth
Science Requirements Lead to Observational Strategies

- Global Hyperspectral Imaging Radiometer
- Geostationary Hyperspectral Imaging Radiometer(s)
- Multi-Spectral High Spatial Resolution Imager
- Portable Sensors from Suborbital Platforms
- Variable Fluorescence Lidar
- Mixed Layer Depth & Illumination Sensor
- Ocean Particle Profiler & Aerosol Column Distributions
Science Requirements Lead to Observational Strategies

- Global Hyperspectral Imaging Radiometer
- Geostationary Hyperspectral Imaging Radiometer(s)
- Multi-Spectral High Spatial Resolution Imager
- Portable Sensors from Suborbital Platforms
- Variable Fluorescence Lidar
- Mixed Layer Depth & Illumination Sensor
- Ocean Particle Profiler & Aerosol Column Distributions
GEO partnership
Earth Science & Applications from Space Decadal Survey (2007)

NRC's response to NASA, NOAA & USGS to generate consensus recommendations regarding …

1. high-priority missions & activities to support needs for research & monitoring of the Earth during the next decade, and

2. important directions that should influence planning for the decade beyond.

Prepublication copy available at http://www.nap.edu/catalog/11820.html
17 Recommended New Missions: “Minimal Yet Robust”

- NOAA & NASA missions launched from 2010-2020:
 - Seven “small” ($65M to $300 million, ~50% “error bar”)
 - Eight “medium” ($350M to $600M)
 - Two “large” ($700M & $800M, ~30% “error bar”)

- NOAA: Transition 3 LEO “research” to “operational”
 - Extended vector winds, GPS radio-occultation, total solar irradiance

- NASA: Implement 14 other missions
 - 2 GEO & 12 LEO
 - Four 2010-2013, Five 2013-2016 & Six 2016-2020 launches
OBB Plan Mission Prioritization

Global Hyperspectral Imaging Radiometer

Geostationary Hyperspectral Imaging Radiometer

Multi-Spectral High Spatial Resolution Imager
Community Plan for NASA Ocean Biology & Biogeochemistry Program

- Provide a plan for future of the NASA OBB program
- Science to Requirements to Strategies to Missions
- Community plan - intended as “living document”
- Rec’s consistent with the NRC Decadal Survey
Plans are worthless, but planning is everything.

Dwight David Eisenhower
2013-2016 NASA Missions

<table>
<thead>
<tr>
<th>Mission</th>
<th>(#) Measurement Types (Panel Themes)</th>
<th>Orbit</th>
<th>Instruments</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperspectral/IR Imagery (HyspiRI)</td>
<td>(4) Land surface composition for agriculture & mineral characterization, vegetation types for ecosystem health (Ecosystem, health, solid earth)</td>
<td>LEO, SSO</td>
<td>Hyperspectral spectrometer</td>
<td>$300M</td>
</tr>
<tr>
<td>Active Emissions: Days, and Seasons (ASCENDS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Water/Ocean Topography (SWOT)</td>
<td>(4) Ocean Circulation, Heat Storage, & Climate Forcing. Algal Blooms & Water-Borne Infectious Disease, Global Ecosystem Dynamics, Heat Stress & Drought, Inland & Coastal Water Quality (Climate, health, water)</td>
<td>LEO, SSO</td>
<td>Ka-band wide swath radar</td>
<td>$450M</td>
</tr>
<tr>
<td>OBB #2 Geostationary Hyperspectral Radiometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geostationary Coastal & Air Pollution Events (Geo-CAPE)</td>
<td>(9) Air Pollution, Acute Toxic Pollution Releases, Algal Blooms & Water-Borne Infectious Disease, Global Ecosystem Dynamics, Heat Stress & Drought, Inland & Coastal Water Quality (Climate, health, water)</td>
<td>GEO</td>
<td>High & low spatial resolution hyperspectral</td>
<td>$550M</td>
</tr>
<tr>
<td>OBB #1 Global Hyperspectral Imaging Radiometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decadal Survey Q’s Driven by Societal Needs*

Air Quality: More reliable forecasts for effective urban pollution management

Climate Prediction: Robust estimates of climate forcings for better forecasts, including local predictions of climate change effects

Earthquake Warning: Identify active faults & predict likelihood of earthquakes for effective structural improvements & informed land-use decisions

Ecosystem Services: Improved agricultural land-use & ocean productivity forecasts to improve planting & harvesting schedules & fisheries management

Extreme Event Warnings: Better storm track forecasts & intensification predictions, volcanic eruption & landslide warnings for effective evacuation planning

Freshwater Availability: Improved precipitation & drought forecasts for better management

Human Health: Better infectious & vector-borne disease forecasts for control & response

Improved Weather Prediction: Longer-term, more reliable forecasts

Sea-level Rise: Better ocean temperature & ice-sheet volume change forecasts & feedback for effective coastal community planning
Next Decade Mission Prioritization

Selection Process
- Panels reviewed >100 candidates, 35 recommended to Executive committee
- Range & synergy of measurements critical, not individual missions
- Robustness of mission synergies ensures measurements

Prioritization Criteria (Not in order of importance)
- Ability to complement other systems, US & international plans
- Contribution to:
 - Applications & policy (societal needs)
 - Long-term observational record
 - Multiple applications or science disciplines
 - Top scientific questions
- Cost (mission total or per year)
- Readiness (technical, resources, people)
- Risk & strategic redundancy (backup other critical systems)
Setting NOAA’s Foundation: Recommended Current Decade

- Restore NPOESS canceled capabilities:
 - Total solar irradiation (TSI) & Earth radiation budget (ERB) to avoid 2008-2012 gap
 - Passive ocean vector winds & all-weather sea surface temperature Conical Microwave Imager/Sounder (CMIS)
 - Limb sounding by Ozone Monitoring & Profiling Suite (OMPS)

- Restore GOES-R canceled capabilities:
 - GEO temperature & water vapor vertical sounding via canceled Hyperspectral Environmental Suite (HES)
 - Recognizing technology challenges & potential HES cost growth:
 - Complete & launch Geostationary Imaging Fourier Transform Spectrometer (GIFTS), & evaluate as HES prototype; and/or
 - Restore HES study contracts to focus on cost-effective, essential GOES-R sounding
 - Will strengthen GEO sounding technology & provide experience for efficient operational implementation
Setting NASA’s Foundation: Recommended Current Decade

- Near-term NASA concerns:
 - Understand changing precipitation patterns due to climate change
 - Understand land-use effects of growing population, changing economies, & agriculture intensification

Therefore: Maintain Global Precipitation Measurement (GPM) mission & continue to document biosphere changes provided by Landsat
 1. Launch GPM by 2012
 2. Replace Landsat 7 data before 2012

Sustained measurements of key climate & weather variables are part of committee’s strategy to achieve vision for Earth information in next decade
Relevance to Science Questions
GEO partnership