Satellite Data Delivery in the IOOS Era

Dave Foley
CoastWatch Coordinator
Joint Institute for Marine and Atmospheric Research
University of Hawaii
And
NOAA Southwest Fisheries Science Center,
Environmental Research Division.

NASA OCRT Meeting
Seattle, WA
April 11, 2007
Overview

- **Background on IOOS and Remote Sensing**
 - Spatial Scales to be a big deal
- **Data Stewardship at National Level**
- **Data Management at Regional Level**
- **Data Delivery Mechanisms**
- **Illustration by Application**
 - The need for basic (L2) data
 - The need for highly derived properties
 - The need for long-term continuity
Background: IOOS and Remote Sensing

- Initial Workshop in Durham, New Hampshire during October 2006.
- Generally assumed to be a contribution of the “National backbone”. Very few elements of the “backbone” are as yet identified.
- Many requirements request support possible only by airborne sensors.
Higher spatial resolution critical to monitor complex coastal waters

MODIS
1 km
water clarity

Modeled
HES-CW
(250 m)
Non-Chesapeake Bay Image
Data Stewardship at the National Level

- **Maintenance of archives**
 - CLASS (Boulder, CO and Asheville, NC)
 - “Nodes”
- **Reprocessing of climate data records**
 - Scientific Data Stewardship Committee
- **Development of New Products**
 - User driven (e.g., IOOS)
 - “Hey let’s try this”
Regional Development Model

- Form ‘centers of excellence” comprised of regional experts
- Target specific applications
 - Regional algorithms
 - Integrated products
- Develop and deliver experimental products
- Transfer technology to National level for possible implementation elsewhere
Data Availability

- **Standard transport of large files via ftp or similar means**
- **Live Access Server** - browse capability and data delivery of sub-samples in variety of formats
- **Interoperable (machine to machine)**
 - OPenDAP
 - Web Services (WSC, WMS, WFS)
- **Aggregators**
 - THREDDS (inherently supports opendap, wcs)
- **Transition from web-based to client-side data transfers**
Client-side Services

- Client accesses the required data from within their favorite application
 - Matlab
 - IDL
 - ArcGIS
 - Excel (??)
 - R /S+
- All relevant data available by a common interface
- Allows them to integrate their data without sending it into some [non-existent] grand data base.
Heceta Bank HAB: A Juan de Fuca eddy analog?

Courtesy
Peter Strutton
Michelle wood
Olive Ridley Turtles

- Yonat Swimmer, Lianne McNaughton and others (NMFS/PIFSC).
- Mike Laurs (NMFS/SWFS).
Examining Habitat Preferences
Potential Habitat Maps

SeaWiFS data courtesy of NASA GSFC and Orbimage Inc.
Need for Long-term Continuity
Ongoing Efforts

- Learn to handle L1A and L2 swath data with new transport tools.
- Form partnerships with end users to develop appropriate products.
- Develop systematic metadata standards, and the ability to translate between those and various existing standards.
- Develop access tools for common clients.
Concerns for the Future

► Continuity
 - VIIRS (??) - who’ll fix it if it flys?

► Access
 - Would like the DAACS to adopt services such as THREDDS

► Archives
 - CLASS has a LONG was to go, especially with regards to science-quality data records.
 - Will the DAACs be there in the interim, under the new NASA model.

► Advocacy
 - We continue to build advocacy within the Marine resources community; success stories will be shared with NASA as they emerge.
Contact Information

Dave Foley
NOAA SWFSC - ERD
1352 Lighthouse Ave
Pacific Grove, CA 93950

831.648.0632
dave.foley@noaa.gov
http://coastwatch.pfel.noaa.gov/