Climate Data Records
&
Product Selection

Charles McClain
&
Carlos Del Castillo
ESE Data Requirements for Climate Research: Climate Data Records

- **Long-term time series**
 - Must span interannual and short-term natural variability (e.g., ENSO)
 - Necessarily requires data from multiple missions (e.g., CZCS to NPOESS)
 - Must include most recent data, e.g., NPP/VIIRS
 - Ocean color continuous time series starts in 1996 with ADEOS-I/OCTS
 - Must minimize data gaps to avoid aliasing of natural climate oscillations (e.g., ENSO)

- **Highest possible quality**
 - Must not include significant sensor artifacts and trends
 - Decadal scale variability and climate trends are small and can be easily confused with sensor drift
 - Ocean color products are particularly sensitive to sensor characterization/calibration errors (e.g., 1% error in calibration produces about a 10% error in water-leaving radiance)
 - Must be validated with highly accurate field data
 - Requires reprocessings (e.g., SeaWiFS has reprocessed 4 times in 5 years)

- **Consistency between satellite data sets**
 - Must be cross-calibrated and processed using similar algorithms, i.e, no abrupt transitions between data sets
 - Requires reprocessings
 - NPP EDRs will have discontinuities (based on existing IPO contracts)
 - NPP climate quality products required near-term for extending CDRs to support ESE deliverables
NOAA AVHRR 8-km NDVI Data Set

AVHRR analyses require Solar zenith angle correction

- Many satellite data records have trends & discontinuities resulting from satellite operation & sensor calibration artifacts
- Magnitude of trends & biases can far exceed climate signals

- SeaWiFS Lwn validation requires highly accurate satellite and in situ observations of radiometry
- SeaWiFS on-orbit calibrations accurate to ~0.1% based on ongoing rigorous calibration program
CDR Requirements:
- Highly accurate satellite calibrations over time
- Highly accurate field observations for algorithm development & validation
Ocean Color Parameters

- **Previous OC Parameter Set**
 - Normalized water-leaving radiances (7)
 - Aerosol optical thickness (865 nm)
 - Atmospheric correction epsilon
 - Aerosol model numbers (2)
 - Clear water aerosol correction epsilon
 - CZCS pigment concentration
 - Chlorophyll-a concentration (3)
 - Total pigment concentration
 - Chlorophyll fluorescence line height
 - Chlorophyll fluorescence baseline
 - Chlorophyll fluorescence efficiency
 - Total suspended matter
 - Coccolithophore pigment concentration
 - Detached coccolithophore concentration
 - Calcite concentration
 - Diffuse attenuation at 490 nm
 - Phycoerythobilin concentration
 - Phycourobilin concentration
 - Instantaneous PAR
 - Instantaneous absorbed radiation for fluorescence
 - Gelbstoff absorption coefficient at 400 nm
 - Phytoplankton absorption coefficient at 675 nm
 - Total absorption coefficients (5)
 - Primary production (2 at Level-4)

- **Current Parameter Set**
 - Normalized water-leaving radiances (6)
 - Aerosol optical thickness (865 nm)
 - Atmospheric correction epsilon
 - Ångström exponent at 510 nm
 - Chlorophyll-a (1)
 - Diffuse attenuation coefficient at 490 nm
 - Daily mean PAR

Previous OC Parameter Set 38
(does not include archived ancillary data & quality control fields)

Current OC Parameter Suite 12
(does not include archived ancillary data)
Ocean Color Product Suite Parameters: A Suggested Baseline

- Normalized Water Leaving Radiance (412, 445, 488, 555 nm)
- Chlorophyll-a
- Daily Mean Photosynthetically Available Radiation (PAR)
- Diffuse Attenuation for PAR
- Primary Production
- Particulate Organic Carbon
- Calcite
- Dissolved Organic Carbon or Colored Dissolved Organic Matter
- Total Suspended Matter
- Gelbstoff Absorption (412 nm)
- Total Absorption Coefficient (412 nm)
- Aerosol optical thickness (865 nm; not derived from ocean color processing)
- Epsilon or Angstrom Exponent
Process for Determining Ocean Color Product Suite: A Strawman Community Approach

• Establish a standing working group for product selection
 – Define mandate and reporting requirements (time lines, format, etc.)
• Define/review ocean biogeochemistry goals and objectives
 – Refer to NASA theme roadmaps, e.g., Carbon & Ecosystems
• Identify geophysical parameters required by roadmaps that fall under the NASA Ocean Biogeochemistry Program
• Select geophysical parameters that are amenable to satellite remote sensing observation or have the potential to be.
 – Establish algorithm selection process, e.g., working group(s)
• Prioritize parameter set and establish algorithm development & validation resource requirements.
 – Outline strategy, budget, and time line for each.
 • Identify the field data collection requirements and potential opportunities
 • Stagger development depending on priority, feasibility, and cost
 • Include review &/or development of measurement protocols
 • Include an assessment of in situ instrumentation
 – Include feasibility and processing system impact assessment
• Develop a process whereby the status of each product is periodically evaluated in view of the entire product suite.
 – Allows re-evaluation of priorities and strategies