MODIS Ocean Data Processing

Bryan Franz

NASA Ocean Biology Processing Group

MODIS Remote Sensing Workshop, UMBC, 8-10 January 2007
Operational MODIS Ocean Band Suite

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Wavelength (nm)</th>
<th>Band Width (nm)</th>
<th>Spatial Resolution (m)</th>
<th>SNR at (L_{typ}) (mW cm(^{-2}) m(^{-1}) sr(^{-1}))</th>
<th>(L_{typ}) (mW cm(^{-2}) m(^{-1}) sr(^{-1}))</th>
<th>(L_{max}) (mW cm(^{-2}) m(^{-1}) sr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>412</td>
<td>15</td>
<td>1000</td>
<td>1773</td>
<td>7.84</td>
<td>26.9</td>
</tr>
<tr>
<td>9</td>
<td>443</td>
<td>10</td>
<td>1000</td>
<td>2253</td>
<td>6.99</td>
<td>19.0</td>
</tr>
<tr>
<td>10</td>
<td>488</td>
<td>10</td>
<td>1000</td>
<td>2270</td>
<td>5.38</td>
<td>14.0</td>
</tr>
<tr>
<td>11</td>
<td>531</td>
<td>10</td>
<td>1000</td>
<td>2183</td>
<td>3.87</td>
<td>11.1</td>
</tr>
<tr>
<td>12</td>
<td>551</td>
<td>10</td>
<td>1000</td>
<td>2200</td>
<td>3.50</td>
<td>8.8</td>
</tr>
<tr>
<td>13</td>
<td>667</td>
<td>10</td>
<td>1000</td>
<td>1962</td>
<td>1.47</td>
<td>4.2</td>
</tr>
<tr>
<td>14</td>
<td>678</td>
<td>10</td>
<td>1000</td>
<td>2175</td>
<td>1.38</td>
<td>4.2</td>
</tr>
<tr>
<td>15</td>
<td>748</td>
<td>10</td>
<td>1000</td>
<td>1371</td>
<td>0.889</td>
<td>3.5</td>
</tr>
<tr>
<td>16</td>
<td>869</td>
<td>15</td>
<td>1000</td>
<td>1112</td>
<td>0.460</td>
<td>2.5</td>
</tr>
</tbody>
</table>

VIS/NIR

Ocean Color

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Wavelength (nm)</th>
<th>Band Width (nm)</th>
<th>Spatial Resolution (m)</th>
<th>NEdT</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3959</td>
<td>60</td>
<td>1000</td>
<td>0.07</td>
</tr>
<tr>
<td>23</td>
<td>4050</td>
<td>60</td>
<td>1000</td>
<td>0.07</td>
</tr>
<tr>
<td>31</td>
<td>11000</td>
<td>60</td>
<td>1000</td>
<td>0.05</td>
</tr>
<tr>
<td>32</td>
<td>12000</td>
<td>60</td>
<td>1000</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Data Levels & Flow

- **Level 0**
 - raw digital counts
 - native binary format

- **Level 1A**
 - raw digital counts
 - HDF formatted

- **Level 1B**
 - calibrated reflectances
 - converted telemetry

- **Ancillary data**
 - wind speed
 - surface pressure
 - total ozone
 - Reynolds SST

- **ATT & EPH**
 - spacecraft attitude
 - spacecraft position

- **GEO**
 - geolocation
 - radiant path geometry

- **Level 2**
 - geolocated geophysical products for each pixel
Data Levels & Flow

- **Level 0**
 - raw digital counts
 - native binary format

- **Level 1A**
 - raw digital counts
 - HDF formatted

- **Level 1A Subset**
 - reduced to standard ocean bands only

- **Ancillary data**
 - wind speed
 - surface pressure
 - total ozone
 - Reynolds SST

- **ATT & EPH**
 - spacecraft attitude
 - spacecraft position

- **GEO**
 - geolocation
 - radiant path geometry

- **Level 1B**
 - calibrated reflectances
 - converted telemetry

- **Level 2**
 - geolocated geophysical products for each pixel
Level-3 Processing

- **Level 2**
 - geolocated geophysical products for each pixel

- **Level 3 binned**
 - geophysical products averaged spatially and/or temporally
 - sinusoidally distributed, equal area bins

- **Level 3 mapped**
 - images created by mapping and scaling binned products
 - user-friendly, cylindrical equiangular projection

Standard Products

- Bin resolution 4.6 x 4.6 km²

- Mapped resolution
 - 0.042-deg (4.6 km at equator)
 - 0.084-deg (9.2 km at equator)

- Composite Periods
 - Daily
 - 8-day
 - Monthly
 - Seasonal
 - Yearly
 - Mission
Level-3 Binned vs Mapped

bin file grid

- **bin files**
 - multiple products
 - stored as float
 - sampling statistics included

- **map files**
 - single product
 - stored as scaled integer

map file grid
Standard MODIS Ocean Products

- **Ocean Temperature**
 - Long-wave SST (11-12 μm), day and night
 - Short-wave SST (3.9 - 4.0 μm), night only
 - SST quality level (0-4)

- **Ocean Color (day only)**
 - Normalized water-leaving radiances, nLw(λ)
 - Chlorophyll, C_a
 - Diffuse attenuation, $K_d(490)$
 - Aerosol type and concentration
 - Optical thickness, τ_a
 - Ångström exponent
 - Atmospheric epsilon
 - Processing flags
 - Cloud, land, glint, atmfail, atmwarn, chlfail, chlwarn, etc.
Non-standard MODIS Ocean Products

• Ocean Temperature
 – Brightness temperatures

• Ocean Color
 – Alternate C_a and K_d algorithms
 – Chlorophyll fluorescence, FLH
 – Particulate inorganic carbon, Calcite
 – Inherent optical properties (various bio-optical models)
 • absorption (total, phaeophytin, dissolved matter)
 • backscatter (total, particulate)
 – Photosynthetically active radiation, iPAR, PAR (coming)
 – Euphotic depth (Z_{eu}, Z_{sd})
 – Subsurface PAR at 1st optical depth, K_d(PAR)
 – Intermediate atmospheric correction products
MSL12
Multi-Sensor Level-1 to Level-2

• Common software for Level-2 processing of MODIS, SeaWiFS and other sensors in a consistent manner.

• Supports a multitude of product algorithms and processing methodologies.
 – standard and non-standard, validated and experimental
 – run-time selection of output product suite

• For MODIS, replaced:
 – PGE09, PGE10
 – products MOD18 - MOD28
 – file types MODOCL2A, MODOCL2B, MODOCQC, MOD28L2, MOD28QC
SeaDAS
SeaWiFS Data Processing, Analysis, and Display
MODIS Direct Broadcast Support

These images and histograms show pixel-for-pixel comparisons between MODIS/Aqua products generated from a Level-0 scene (UWisc DB station) using SeaDAS, and the overlapping 5-minute granule processed by the OBPG. Using SeaDAS, it is possible to exactly reproduce the standard products distributed by the OBPG, as well as a host of additional products.
Level-2 SST Processing

1 Convert observed radiances to brightness temperatures (BTs)

2 Apply empirical algorithm to relate brightness temperature in two wavelengths to SST

\[
sst = a_0 + a_1 \cdot BT_1 + a_2 \cdot (BT_2 - BT_1) + a_3 \cdot (1.0/\mu - 1.0)
\]

3 Assess quality (0=best, 4=not computed)
 - e.g., cloud or residual water vapor contamination
 - no specific “cloud mask”
Daytime SST Products

Longwave SST

Shortwave SST

Cloud

Sun glint
Nighttime SST Products

Shortwave SST

Longwave SST

Cloud
SST Quality Levels

Shortwave SST

Shortwave SST QL

QL=0
QL=1
QL=2
QL=3
QL=4
Light Paths to the Sensor
Scattering and Attenuation of Reflected Solar Bands
Ocean Color

1% error in instrument calibration or atmospheric model
~10% error in water-leaving radiance
Effects of the Atmosphere

- Gaseous absorption (ozone, water vapor, oxygen)
- Rayleigh scattering by air molecules
- Mie scattering and absorption by aerosols (haze, dust, pollution)
- Polarization (MODIS response varies with polarization of signal)

Rayleigh (80-85% of total signal)
- small molecules compared to nm wavelength, scattering efficiency decreases with wavelength as λ^{-4}
- reason for blue skies and red sunsets
- can be accurately approximated for a given atmospheric pressure and geometry (using a radiative transfer code)

Aerosols (0-10% of total signal)
- particles comparable in size to the wavelength of light, scattering is a complex function of particle size
- whitens or yellows the sky
- significantly varies and cannot be easily approximated
Surface Effects

Sun Glint

White Caps

Corrections based on statistical models (wind & geometry)
Atmospheric Correction

\[t_d(\lambda) \ L_w(\lambda) = L_t(\lambda) / t_g(\lambda) / f_p(\lambda) - TL_g(\lambda) - tL_f(\lambda) - L_r(\lambda) - L_a(\lambda) \]

\[nL_w(\lambda) = L_w(\lambda) f_b(\lambda) / t_{d0}(\lambda) \mu_0 f_0 \]

But, we need aerosol to get \(L_w(\lambda) \)

\(L_w(\lambda=\text{NIR}) \approx 0 \) and can be estimated (model extrapolation from VIS) in waters where \(C_a \) is the primary driver of \(L_w(\lambda) \).

\[L_a(\lambda=\text{NIR}) = L_t(\lambda) / t_g(\lambda) / f_p(\lambda) - TL_g(\lambda) - tL_f(\lambda) - L_r(\lambda) - t_d(\lambda) L_w(\lambda) \]
Aerosol Determination in Visible Wavelengths

Given retrieved aerosol reflectance at two λ, and a set of aerosol models $fn(\theta, \theta_0, \phi)$.

$$\rho_a(748) \& \rho_a(869)$$

$$\rho_a(\text{NIR}) \Rightarrow \rho_{as}(\text{NIR})$$

$$\varepsilon(748, 869) = \frac{\rho_{as}(748)}{\rho_{as}(869)}$$

$$\varepsilon(\lambda, 869) = \frac{\rho_{as}(\lambda)}{\rho_{as}(869)}$$

$$\rho = \frac{\pi L}{F_0 \cdot \mu_0}$$
Iterative Correction for Non-zero $L_w(NIR)$

1) Assume $L_w(NIR) = 0$
2) Compute $L_a(NIR)$
3) Compute $L_a(VIS)$ from $L_a(NIR)$
4) Compute $L_w(VIS)$
5) Estimate $L_w(NIR)$ from $L_w(VIS) + \text{model}$
6) Repeat until $L_w(NIR)$ stops changing

Iterating up to 10 times
Level-2 Ocean Color Processing

1. Determine atmospheric and surface contributions to total radiance at TOA and subtract, iterating as needed.

2. Normalize to the condition of Sun directly overhead at 1 AU and a non-attenuating atmosphere (nLw or Rrs = nLw/F₀).

3. Apply empirical or semi-analytical algorithms to relate the spectral distribution of nLw or Rrs to geophysical quantities.

4. Assess quality (set flags) at each step.
Level-2 Flags and Masking

RGB Image

Chlorophyll

Sediments

Glint

Cloud
Level-2 Flags and Masking

- Add masking for high glint
- Add masking for straylight
Level-2 Ocean Color Flags

<table>
<thead>
<tr>
<th>BIT</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>ATMFAIL</td>
<td>Atmospheric correction failure</td>
</tr>
<tr>
<td>02</td>
<td>LAND</td>
<td>Pixel is over land</td>
</tr>
<tr>
<td>03</td>
<td>BADANC</td>
<td>Reduced quality of ancillary data</td>
</tr>
<tr>
<td>04</td>
<td>HIGLINT</td>
<td>High sun glint</td>
</tr>
<tr>
<td>05</td>
<td>HILT</td>
<td>Observed radiance very high or saturated</td>
</tr>
<tr>
<td>06</td>
<td>HISATZEN</td>
<td>High sensor view zenith angle</td>
</tr>
<tr>
<td>07</td>
<td>COASTZ</td>
<td>Pixel is in shallow water</td>
</tr>
<tr>
<td>08</td>
<td>NEGLW</td>
<td>Negative water-leaving radiance retrieved</td>
</tr>
<tr>
<td>09</td>
<td>STRAYLIGHT</td>
<td>Straylight contamination is likely</td>
</tr>
<tr>
<td>10</td>
<td>CLDICE</td>
<td>Probable cloud or ice contamination</td>
</tr>
<tr>
<td>11</td>
<td>COCCOLITH</td>
<td>Coccolithophores detected</td>
</tr>
<tr>
<td>12</td>
<td>TURBIDW</td>
<td>Turbid water detected</td>
</tr>
<tr>
<td>13</td>
<td>HISOLZEN</td>
<td>High solar zenith</td>
</tr>
<tr>
<td>14</td>
<td>HITAU</td>
<td>High aerosol optical thickness</td>
</tr>
<tr>
<td>15</td>
<td>LOWLW</td>
<td>Very low water-leaving radiance (cloud shadow)</td>
</tr>
<tr>
<td>16</td>
<td>CHLFAIL</td>
<td>Derived product algorithm failure</td>
</tr>
<tr>
<td>17</td>
<td>NAVWARN</td>
<td>Navigation quality is reduced</td>
</tr>
<tr>
<td>18</td>
<td>ABSAER</td>
<td>possible absorbing aerosol</td>
</tr>
<tr>
<td>19</td>
<td>TRICHO</td>
<td>Possible trichodesmium contamination</td>
</tr>
<tr>
<td>20</td>
<td>MAXAERITER</td>
<td>Aerosol iterations exceeded max</td>
</tr>
<tr>
<td>21</td>
<td>MODGLINT</td>
<td>Moderate sun glint contamination</td>
</tr>
<tr>
<td>22</td>
<td>CHLWARN</td>
<td>Derived product quality is reduced</td>
</tr>
<tr>
<td>23</td>
<td>ATMWARN</td>
<td>Atmospheric correction is suspect</td>
</tr>
<tr>
<td>24</td>
<td>DARKPIXEL</td>
<td>Rayleigh-subtracted radiance is negative</td>
</tr>
<tr>
<td>25</td>
<td>SEAICE</td>
<td>Possible sea ice contamination</td>
</tr>
<tr>
<td>26</td>
<td>NAVFAIL</td>
<td>Bad navigation</td>
</tr>
<tr>
<td>27</td>
<td>FILTER</td>
<td>Pixel rejected by user-defined filter</td>
</tr>
<tr>
<td>28</td>
<td>SSTWARN</td>
<td>SST quality is reduced</td>
</tr>
<tr>
<td>29</td>
<td>SSTFAIL</td>
<td>SST quality is bad</td>
</tr>
<tr>
<td>30</td>
<td>HIPOL</td>
<td>High degree of polarization</td>
</tr>
<tr>
<td>31</td>
<td>spare</td>
<td>spare</td>
</tr>
<tr>
<td>32</td>
<td>OCEAN</td>
<td>not cloud or land</td>
</tr>
</tbody>
</table>

Level-2 flags used as masks in Level-3 processing
Are the results valid?
Available *In Situ* Match-Ups by Mission

MODIS/Aqua
July 2002 - Present

SeaWiFS
Sept 1997 - Present
Comparison of Water-Leaving Radiances to *In Situ*

MODIS/Aqua vs SeaWiFS

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>MODIS # Matches</th>
<th>SeaWiFS # Matches</th>
<th>Mean Ratio*</th>
<th>% Difference**</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>412</td>
<td>553</td>
<td>0.747</td>
<td>30.898</td>
<td>0.742</td>
</tr>
<tr>
<td>443</td>
<td>443</td>
<td>702</td>
<td>0.862</td>
<td>18.811</td>
<td>0.735</td>
</tr>
<tr>
<td>488</td>
<td>490</td>
<td>660</td>
<td>0.923</td>
<td>14.563</td>
<td>0.735</td>
</tr>
<tr>
<td>531</td>
<td>510</td>
<td>479</td>
<td>0.933</td>
<td>11.178</td>
<td>0.735</td>
</tr>
<tr>
<td>551</td>
<td>555</td>
<td>702</td>
<td>0.940</td>
<td>12.255</td>
<td>0.735</td>
</tr>
<tr>
<td>667</td>
<td>670</td>
<td>666</td>
<td>0.682</td>
<td>36.392</td>
<td>0.735</td>
</tr>
</tbody>
</table>
Comparison of Chlorophyll Retrievals to *In Situ*

<table>
<thead>
<tr>
<th>Sensor</th>
<th># Matches</th>
<th>Mean Ratio</th>
<th>% Diff</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeaWiFS</td>
<td>1293</td>
<td>0.998</td>
<td>33.1</td>
<td>0.796</td>
</tr>
<tr>
<td>MODIS/Aqua</td>
<td>263</td>
<td>1.084</td>
<td>40.4</td>
<td>0.780</td>
</tr>
</tbody>
</table>
Definition of Trophic Subsets

Deep-Water (Depth > 1000m)

Oligotrophic (Chlorophyll < 0.1)

Mesotrophic (0.1 < Chlorophyll < 1)

Eutrophic (1 < Chlorophyll < 10)
Comparison of Relative Temporal Stability in nLw
Deep-Water, 8-Day Composites, Common Bins

MODIS/Aqua

SeaWiFS
MODIS/SeaWiFS Ratio Trends

Oligotrophic

Mesotrophic

Eutrophic
Seasonal Chlorophyll Images

MODIS/Aqua
Winter 2004
Summer 2004

SeaWiFS
Winter 2004
Summer 2004

0.01-64 mg m^-3
SST Validation

Buoy Measurements

<table>
<thead>
<tr>
<th>SST 11-12 μm</th>
<th>TERRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>day mean</td>
</tr>
<tr>
<td>2000</td>
<td>-0.139</td>
</tr>
<tr>
<td>2001</td>
<td>-0.262</td>
</tr>
<tr>
<td>2002</td>
<td>-0.135</td>
</tr>
<tr>
<td>2003</td>
<td>-0.086</td>
</tr>
<tr>
<td>2004</td>
<td>-0.068</td>
</tr>
<tr>
<td>2005</td>
<td>-0.110</td>
</tr>
<tr>
<td>2006</td>
<td>-0.105</td>
</tr>
<tr>
<td>all years</td>
<td>-0.108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST 11-12 μm</th>
<th>AQUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>day mean</td>
</tr>
<tr>
<td>2002</td>
<td>-0.153</td>
</tr>
<tr>
<td>2003</td>
<td>-0.133</td>
</tr>
<tr>
<td>2004</td>
<td>-0.137</td>
</tr>
<tr>
<td>2005</td>
<td>-0.152</td>
</tr>
<tr>
<td>2006</td>
<td>-0.135</td>
</tr>
<tr>
<td>all years</td>
<td>-0.142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST 4μm</th>
<th>TERRA</th>
<th>AQUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>night mean</td>
<td>RMS</td>
</tr>
<tr>
<td>2000</td>
<td>-0.161</td>
<td>0.829</td>
</tr>
<tr>
<td>2001</td>
<td>-0.220</td>
<td>0.663</td>
</tr>
<tr>
<td>2002</td>
<td>-0.191</td>
<td>0.528</td>
</tr>
<tr>
<td>2003</td>
<td>-0.176</td>
<td>0.500</td>
</tr>
<tr>
<td>2004</td>
<td>-0.178</td>
<td>0.493</td>
</tr>
<tr>
<td>2005</td>
<td>-0.178</td>
<td>0.471</td>
</tr>
<tr>
<td>2006</td>
<td>-0.174</td>
<td>0.473</td>
</tr>
<tr>
<td>all years</td>
<td>-0.179</td>
<td>0.505</td>
</tr>
</tbody>
</table>
Challenges to Remote Sensing of Coastal and Inland Waters

• Temporal and spatial variability
 – Limitations of satellite sensor resolution and repeat frequency
 – Validity of ancillary data (reference SST, wind)

• Straylight contamination from land

• Non-maritime aerosols (dust, pollution)
 – Region-specific models required
 – Absorbing aerosols

• Anthropogenic emissions (NO$_2$ absorption)

• Suspended sediments and CDOM
 – Invalid estimation of Lw(NIR), model not fn(C$_a$)
 – Saturation of observed radiances
Correction for NO$_2$ Absorption

OMI/Aura Tropospheric NO$_2$

20% increase in nLw(412)
MODIS Land/Atmosphere Bands
Application to Ocean Remote Sensing

<table>
<thead>
<tr>
<th>Band</th>
<th>Wavelength</th>
<th>Resolution</th>
<th>Potential Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>645 nm</td>
<td>250 m</td>
<td>sediments, turbidity, IOPs</td>
</tr>
<tr>
<td>2</td>
<td>859</td>
<td>250</td>
<td>aerosols</td>
</tr>
<tr>
<td>3</td>
<td>469</td>
<td>500</td>
<td>Ca, IOPs, CaCO$_3$</td>
</tr>
<tr>
<td>4</td>
<td>555</td>
<td>500</td>
<td>Ca, IOPs, CaCO$_3$</td>
</tr>
<tr>
<td>5</td>
<td>1240</td>
<td>500</td>
<td>aerosols</td>
</tr>
<tr>
<td>6</td>
<td>1640</td>
<td>500</td>
<td>aerosols</td>
</tr>
<tr>
<td>7</td>
<td>2130</td>
<td>500</td>
<td>aerosols</td>
</tr>
</tbody>
</table>
Expanded MODIS Ocean Band Suite

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Wavelength (nm)</th>
<th>Band Width (nm)</th>
<th>Spatial Resolution (m)</th>
<th>SNR at (L_{typ})</th>
<th>(L_{typ}) (\text{mW cm}^{-2} \mu \text{m}^{-1} \text{sr}^{-1})</th>
<th>(L_{max}) (\text{mW cm}^{-2} \mu \text{m}^{-1} \text{sr}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>412</td>
<td>15</td>
<td>1000</td>
<td>1773</td>
<td>7.84</td>
<td>26.9</td>
</tr>
<tr>
<td>9</td>
<td>443</td>
<td>10</td>
<td>1000</td>
<td>2253</td>
<td>6.99</td>
<td>19.0</td>
</tr>
<tr>
<td>3</td>
<td>469</td>
<td>20</td>
<td>500</td>
<td>556</td>
<td>6.52</td>
<td>59.1</td>
</tr>
<tr>
<td>10</td>
<td>488</td>
<td>10</td>
<td>1000</td>
<td>2270</td>
<td>5.38</td>
<td>14.0</td>
</tr>
<tr>
<td>11</td>
<td>531</td>
<td>10</td>
<td>1000</td>
<td>2183</td>
<td>3.87</td>
<td>11.1</td>
</tr>
<tr>
<td>12</td>
<td>551</td>
<td>10</td>
<td>1000</td>
<td>2200</td>
<td>3.50</td>
<td>8.8</td>
</tr>
<tr>
<td>4</td>
<td>555</td>
<td>20</td>
<td>500</td>
<td>349</td>
<td>3.28</td>
<td>53.2</td>
</tr>
<tr>
<td>1</td>
<td>645</td>
<td>50</td>
<td>250</td>
<td>140</td>
<td>1.65</td>
<td>51.2</td>
</tr>
<tr>
<td>13</td>
<td>667</td>
<td>10</td>
<td>1000</td>
<td>1962</td>
<td>1.47</td>
<td>4.2</td>
</tr>
<tr>
<td>14</td>
<td>678</td>
<td>10</td>
<td>1000</td>
<td>2175</td>
<td>1.38</td>
<td>4.2</td>
</tr>
<tr>
<td>15</td>
<td>748</td>
<td>10</td>
<td>1000</td>
<td>1371</td>
<td>0.889</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>859</td>
<td>35</td>
<td>250</td>
<td>103</td>
<td>0.481</td>
<td>24.0</td>
</tr>
<tr>
<td>16</td>
<td>869</td>
<td>15</td>
<td>1000</td>
<td>1112</td>
<td>0.460</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>1240</td>
<td>20</td>
<td>500</td>
<td>25</td>
<td>0.089</td>
<td>12.3</td>
</tr>
<tr>
<td>6</td>
<td>1640</td>
<td>35</td>
<td>500</td>
<td>19</td>
<td>0.028</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>2130</td>
<td>50</td>
<td>500</td>
<td>12</td>
<td>0.008</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Use of MODIS SWIR bands in coastal waters
(Wang and Shi, 2005)

- In the SWIR range water has more than one order of magnitude stronger absorption than that at the NIR
- In SWIR ocean is black even in turbid waters, $L_w(\text{SWIR}) = 0$
Improved Chlorophyll Retrievals using SWIR bands

NIR-based Aerosols

SWIR-based Aerosols
Satellite vs In Situ

NIR

Upper Bay, ALL in situ n = 3663, med: 10.52, mode: 10.00
color legend: in situ MODIS--Aqua

Middle Bay, ALL in situ n = 5314, med: 9.43, mode: 7.94

Lower Bay, ALL in situ n = 7204, med: 6.50, mode: 6.31

SWIR

GWNIR oc3v5

GWSWIR oc3v5

GWNIR oc3v5

GWSWIR oc3v5

GWNIR oc3v5

GWSWIR oc3v5

Satellite vs In Situ

upper

middle

lower
showing river sediments
RGB Image: 250-meter Resolution
nLw(645): 250-meter resolution
Thank You!
Back-up Slides
SST Quality Tests

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>ISMASKED</td>
<td>Pixel was already masked</td>
</tr>
<tr>
<td>01</td>
<td>BTBAD</td>
<td>Brightness temperatures are bad</td>
</tr>
<tr>
<td>02</td>
<td>BTRANGE</td>
<td>Brightness temperatures are out-of-range</td>
</tr>
<tr>
<td>03</td>
<td>BTDIFF</td>
<td>Brightness temperatures are too different</td>
</tr>
<tr>
<td>04</td>
<td>SSTRANGE</td>
<td>SST outside valid range</td>
</tr>
<tr>
<td>05</td>
<td>SSTREFDIFF</td>
<td>SST is too different from reference</td>
</tr>
<tr>
<td>06</td>
<td>SST4DIFF</td>
<td>Longwave SST is different from shortwave SST</td>
</tr>
<tr>
<td>07</td>
<td>SST4VDIFF</td>
<td>Longwave SST is very different from shortwave SST</td>
</tr>
<tr>
<td>08</td>
<td>BTNUNIONIF</td>
<td>Brightness temperatures are spatially non-uniform</td>
</tr>
<tr>
<td>09</td>
<td>BTNUNIONIF</td>
<td>Brightness temperatures are very spatially non-uniform</td>
</tr>
<tr>
<td>10</td>
<td>BT4REFDIFF</td>
<td>Brightness temperatures differ from reference</td>
</tr>
<tr>
<td>11</td>
<td>REDNONUNIF</td>
<td>Red-band spatial non-uniformity or saturation</td>
</tr>
<tr>
<td>12</td>
<td>HISENZ</td>
<td>Sensor zenith angle high</td>
</tr>
<tr>
<td>13</td>
<td>V HISENZ</td>
<td>Sensor zenith angle very high</td>
</tr>
<tr>
<td>14</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>15</td>
<td>Spare</td>
<td>Spare</td>
</tr>
</tbody>
</table>

SST Quality Levels

<table>
<thead>
<tr>
<th>Quality Bit</th>
<th>Minimum Quality Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISMASKED</td>
<td>4</td>
</tr>
<tr>
<td>BTBAD</td>
<td>4</td>
</tr>
<tr>
<td>BTRANGE</td>
<td>3</td>
</tr>
<tr>
<td>SSTRANGE</td>
<td>3</td>
</tr>
<tr>
<td>BT4REFDIFF</td>
<td>3</td>
</tr>
<tr>
<td>SSTREFVDIFF</td>
<td>3</td>
</tr>
<tr>
<td>BTNUNIONIF</td>
<td>2</td>
</tr>
<tr>
<td>SST4VDIFF</td>
<td>2</td>
</tr>
<tr>
<td>V HISENZ</td>
<td>2</td>
</tr>
<tr>
<td>BTNUNIONIF</td>
<td>1</td>
</tr>
<tr>
<td>SST4DIFF</td>
<td>1</td>
</tr>
<tr>
<td>HISENZ</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Direct Comparison of Satellite nLw Retrievals
Deep-Water, 8-Day Composites, Common Bins

SeaWiFS & MODIS

MODIS / SeaWiFS
Coastal waters

- In case-2 waters (colored dissolved organic matter and suspended particles: sediments and phytoplankton), there can be a substantial water-leaving radiance in the NIR

- \(L_w(\text{NIR}) \neq 0 \)

- With standard processing, excess NIR radiance is wrongly attributed to the atmosphere

- Overestimation of \(L_a \) causes underestimation of \(L_w \) and elevated chlorophyll levels
Aerosol Determination in High Chlorophyll

- High chlorophyll waters (or turbid coastal water) may contain significant \(L_w \) contribution in the NIR

- Atmospheric correction is applied iteratively using NIR reflectance modeling based on consecutive chlorophyll and reflectance retrievals (green & red)

- The modeling assumes
 - NIR absorption to be due to water only, and
 - NIR backscatter to be a function of particulates, colored dissolved organic matter, and detritus
Short-wave SST

\[\text{sst4} = a_0 + a_1 \cdot \text{BT39} + a_2 \cdot \text{dT} + a_3 \cdot (1.0/\mu - 1.0) \]

where:
BT39 = brightness temperature at 3.959 um, in deg-C
BT40 = brightness temperature at 4.050 um, in deg-C
\(\mu \) = cosine of sensor zenith angle
dBT = BT39 - BT40

a0, a1, a2, a3 - fit coefficients derived
derived by regression of MODIS BTs with \textit{in situ} buoys
vary seasonally (probably due to residual water-vapor effects)
determined by science team PI (Peter Minnett and Univ. Miami staff)
Long-wave SST

\[\text{dBt} \leq 0.5 \]
\[\text{sst} = a_{00} + a_{01} \times \text{BT}_{11} + a_{02} \times \text{dBt} \times \text{bsst} + a_{03} \times \text{dBt} \times (1.0 / \mu - 1.0) \]

\[\text{dBt} \geq 0.9 \]
\[\text{sst} = a_{10} + a_{11} \times \text{BT}_{11} + a_{12} \times \text{dBt} \times \text{bsst} + a_{13} \times \text{dBt} \times (1.0 / \mu - 1.0) \]

\[0.5 < \text{dBt} < 0.9 \]
\[\text{sstlo} = a_{00} + a_{01} \times \text{BT}_{11} + a_{02} \times \text{dBt} \times \text{bsst} + a_{03} \times \text{dBt} \times (1.0 / \mu - 1.0) \]
\[\text{ssthi} = a_{10} + a_{11} \times \text{BT}_{11} + a_{12} \times \text{dBt} \times \text{bsst} + a_{13} \times \text{dBt} \times (1.0 / \mu - 1.0) \]
\[\text{sst} = \text{sstlo} + (\text{dBt} - 0.5) / (0.9 - 0.5) \times (\text{ssthi} - \text{sstlo}) \]

where:
- \(\text{BT}_{11} \) = brightness temperature at 11 um, in deg-C
- \(\text{BT}_{12} \) = brightness temperature at 12 um, in deg-C
- \(\text{bsst} \) = baseline SST, which is either \(\text{sst}_{4} \) (if valid) or \(\text{sst}_{\text{ref}} \) (from oisst)
- \(\text{dBt} \) = \(\text{BT}_{11} - \text{BT}_{12} \)
- \(\mu \) = cosine of sensor zenith angle
Gaseous Absorption

Transparency Windows

Transmittance due to O₂ and Water–Vapor

Wavelength (nm)

Transmittance
Atmospheric Correction Equation

\[L_t = L_r + (L_a + L_{ra}) + tL_{wc} + TL_g + t L_w \]

- \(L_w \) is the quantity we wish to retrieve at each wavelength.
- \(TL_g \) is Sun glint, the direct reflectance of the solar radiance from the sea surface. Function of geometry and wind.
- \(tL_{wc} \) is the contribution due to "white"-capping, estimated from statistical relationship with wind speed.
- \(L_r \) is the contribution due to molecular (Rayleigh) scattering, which can be accurately computed.
- \(L_a + L_{ra} \) is the contribution due to aerosol and Rayleigh-aerosol scattering, estimated in NIR from measured radiances and extrapolated to visible using aerosol models.
Revised Temporal Calibration
Reflected Solar Bands

• In collaboration with MCST

• Reanalyzed Onboard Calibration (OBC) Data (solar, lunar)

• Removed residual correlations with diffuser screen geometry

• Refit solar diffuser trends to double exponential model

• Improved LUT extrapolation
Multi-Mission Approach

• Common software for Level-1 through Level-3
 – reduces potential for algorithm and implementation differences
 – sensor-specific issues consolidated in i/o function and external tables

• Mission-independent, distributed processing system
 – controls staging/sequencing of processing jobs for max through-put
 – 150x global reprocessing for MODIS, 1600x for SeaWiFS

• Standard procedures for calibration and validation
 – temporal calibration via On-Board Calibration system (OBC)
 – vicarious calibration to MOBY (instrument + algorithm calibration)
 – validation against SeaBASS in situ archive
 – temporal trending analysis of Level-3 products
Aerosol modeling

• Shettle and Fenn (1979) introduced a set of basic aerosol models
 – tropospheric
 – coastal
 – maritime, and
 – urban
• Each model consists of a mixture of dry aerosol particles that will grow when exposed to a humid environment
• Tropospheric, coastal, and maritime models defined for different humidity ranges are used in ocean color atmospheric correction
Operational aerosol models
(Gordon and Wang, 1994)

- There are 12 aerosol models used in the current atmospheric correction
 - The models are tabulated per sensor wavelength
 - albedo
 - extinction coefficient
 - phase function value per scattering angles
 - quadratic equation coefficients per θ_0, θ, ϕ for conversion from single scattering to multiple scattering reflectance
 - Rayleigh-aerosol diffuse transmittance coefficients, a and b

<table>
<thead>
<tr>
<th>AEROSOL MODELS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 O99</td>
<td>oceanic 99% humidity</td>
</tr>
<tr>
<td>2 M50</td>
<td>maritime 50% humidity</td>
</tr>
<tr>
<td>3 M70</td>
<td>maritime 70% humidity</td>
</tr>
<tr>
<td>4 M90</td>
<td>maritime 90% humidity</td>
</tr>
<tr>
<td>5 M99</td>
<td>maritime 99% humidity</td>
</tr>
<tr>
<td>6 C50</td>
<td>coastal 50% humidity</td>
</tr>
<tr>
<td>7 C70</td>
<td>coastal 70% humidity</td>
</tr>
<tr>
<td>8 C90</td>
<td>coastal 90% humidity</td>
</tr>
<tr>
<td>9 C99</td>
<td>coastal 99% humidity</td>
</tr>
<tr>
<td>10 T50</td>
<td>tropospheric 50% humidity</td>
</tr>
<tr>
<td>11 T90</td>
<td>tropospheric 90% humidity</td>
</tr>
<tr>
<td>12 T99</td>
<td>tropospheric 99% humidity</td>
</tr>
</tbody>
</table>
\[\alpha = \ln \left(\frac{\tau(\lambda)}{\tau(865)} \right) / \ln \left(\frac{865}{\lambda} \right) \]

Single scattering reflectance ratio

\[\epsilon(\lambda, 865) = \frac{\rho_{as}(\lambda)}{\rho_{as}(865)} \]

Ångström exponent

flat slope ⇒ weak wavelength dependence ⇒ large particles
Sequence of operations
(Gordon and Wang, 1994)

- Obtain L_a from the top-of-the-atmosphere NIR radiances
 $$L_a = \frac{[(L_t - tL_{wc}) / t_{oz_sol} / t_{oz_sen} / polcor - L_r]}{t_{o2} - TL_g}$$

- Select the tabulated aerosol model which two-band relative NIR reflectances are the closest to satellite-derived reflectances
- Using this aerosol model estimate aerosol contribution in the visible bands
- Remove aerosol radiance in the visible bands
- Calculate VIS water-leaving radiances

<table>
<thead>
<tr>
<th>SeaWiFS Band</th>
<th>SeaWiFS λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>412</td>
</tr>
<tr>
<td>2</td>
<td>443</td>
</tr>
<tr>
<td>3</td>
<td>490</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
</tr>
<tr>
<td>5</td>
<td>555</td>
</tr>
<tr>
<td>6</td>
<td>670</td>
</tr>
<tr>
<td>7</td>
<td>765</td>
</tr>
<tr>
<td>8</td>
<td>865</td>
</tr>
</tbody>
</table>
Use of ε in atmospheric correction

- ε is used in selection of aerosol models and in propagating model reflectance from the NIR to VIS wavelengths.
- ε is a ratio of single scattering aerosol reflectance.

\[
\varepsilon(\lambda, 865) = \frac{\rho_{\text{as}}(\lambda)}{\rho_{\text{as}}(865)}, \quad \text{where } \rho = \frac{\pi L}{F_0 \cdot \mu_0}
\]

- ε is assumed known for any type of aerosol and geometry.

- Find two aerosol models which theoretical ε brackets the ε calculated from the data.
- Get modeled ε for the two models for VIS wavelengths.
- Extrapolate ρ_{as} to VIS for the two models.

\[
\rho_{\text{as}}(\lambda) = \rho_{\text{as}}(865) \cdot \varepsilon(\lambda, 865)
\]

- $\rho_{\text{as}}(\lambda) \Rightarrow \rho_{\text{a}}(\lambda)$
- Average $\rho_{\text{a}}(\lambda)$ between the two models $\Rightarrow L_{\text{a}}(\lambda) \Rightarrow tL_{\text{w}}(\lambda)$
nLw calculation

- \(nL_w = \frac{L_w \cdot brdf}{t_{sol} \cdot t_{oz_sol} \cdot \mu_0 \cdot f_{sol}} \)

- \(nL_w \) - the radiance that would be measured exiting the flat surface of the ocean with the Sun at zenith (directly overhead) and with the atmosphere absent

- \(nL_w(VIS) \Rightarrow nL_w(VIS_{10nm}) \)

- correction of the retrieved \(nL_w \) from the full bandpass averaged value to a 10-nm square bandpass centered on the sensor nominal wavelength

\(\theta_0 \) – solar zenith angle, \(\theta \) – sensor zenith, \(\phi \) – relative azimuth

\(\mu_0 = \cos(\theta_0) \), \(\mu = \cos(\theta) \)

\(f_{sol} \) – solar distance correction factor

\(t_{oz_sen} \) – diffuse transmittance from surface to sensor through ozone layer

\(t_{oz_sen} \) – diffuse transmittance from Sun to surface through ozone layer

\(brdf \) – bidirectional reflectance correction at surface
Chlorophyll algorithms

• Each sensor has a default empirical chlorophyll algorithm
 – MODIS-Aqua default, OC3 algorithm
 – SeaWiFS default, OC4 algorithm

\[
C_a = 10^{0.283-2.753R+1.457R^2+0.659R^3-1.403R^4}, \text{ where } R = \log_{10}\left(\frac{R_{rs443} > R_{rs488}}{R_{rs551}}\right)
\]

\[
C_a = 10^{0.366-3.067R+1.930R^2+0.649R^3-1.532R^4}, \text{ where } R = \log_{10}\left(\frac{R_{rs443} > R_{rs490} > R_{rs510}}{R_{rs555}}\right)
\]

• There are other optional empirical and semi-analytical algorithms (inversion of \(R_{rs} = \)), e.g. Garver, Siegel, Maritorena, 2001
• There are optional IOP algorithms, e.g. Z.P. Lee, J. Carder

remote sensing reflectance \(R_{rs} = nL_w / F_0\), w – water, ph – phytoplankton, d – suspended particulate matter, g – colored dissolved organic matter
Uncertainties in the operational atmospheric correction
Coastal waters

- In case-2 waters (colored dissolved organic matter and suspended particles: sediments and phytoplankton), there can be a substantial water-leaving radiance in the NIR

- \(L_w(\text{NIR}) \neq 0 \)

- With standard processing, excess NIR radiance is wrongly attributed to the atmosphere
- Overestimation of \(L_a \) causes underestimation of \(L_w \) and elevated chlorophyll levels

Radiance in case-2 waters:
- absorption by CDOM in the blue
- reflectance by sediments in the NIR
- Chesapeake Bay

Radiance in clear waters:
- phytoplankton only
- around MOBY
MOBY used to adjust prelaunch calibration gains for visible bands using satellite-buoy comparisons.
Summary Statistics for Global Trend Comparisons
Water-Leaving Radiances

MODIS & SeaWiFS Mean nL_w

MODIS & SeaWiFS Std. Dev nL_w
Chlorophyll Comparisons

- Oligotrophic
- Mesotrophic
- Eutrophic
Residual Detector Striping

nLw(412) Before Correction

nLw(412) After Correction
Bidirectional Reflectance at Surface

- Each sensor views the same location on earth from different view angle and at different time of day (solar angle).
- The angular distribution of upwelling radiance varies with solar illumination angle and the scattering properties of the water body.
- A. Morel developed a correction for this effect, which was incorporated into the common processing software for both sensors.

Residual Scan Dependence in MODIS nLw(443)

Before BRDF

After BRDF
Artifacts and Issues
Operational MODIS Ocean Band Suite

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Wavelength (nm)</th>
<th>Band Width (nm)</th>
<th>Spatial Resolution (m)</th>
<th>SNR at L_{typ}</th>
<th>L_{typ}</th>
<th>L_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>412</td>
<td>15</td>
<td>1000</td>
<td>1773</td>
<td>7.84</td>
<td>26.9</td>
</tr>
<tr>
<td>9</td>
<td>443</td>
<td>10</td>
<td>1000</td>
<td>2253</td>
<td>6.99</td>
<td>19.0</td>
</tr>
<tr>
<td>10</td>
<td>488</td>
<td>10</td>
<td>1000</td>
<td>2270</td>
<td>5.38</td>
<td>14.0</td>
</tr>
<tr>
<td>11</td>
<td>531</td>
<td>10</td>
<td>1000</td>
<td>2183</td>
<td>3.87</td>
<td>11.1</td>
</tr>
<tr>
<td>12</td>
<td>551</td>
<td>10</td>
<td>1000</td>
<td>2200</td>
<td>3.50</td>
<td>8.8</td>
</tr>
<tr>
<td>13</td>
<td>667</td>
<td>10</td>
<td>1000</td>
<td>1962</td>
<td>1.47</td>
<td>4.2</td>
</tr>
<tr>
<td>14</td>
<td>678</td>
<td>10</td>
<td>1000</td>
<td>2175</td>
<td>1.38</td>
<td>4.2</td>
</tr>
<tr>
<td>15</td>
<td>748</td>
<td>10</td>
<td>1000</td>
<td>1371</td>
<td>0.889</td>
<td>3.5</td>
</tr>
<tr>
<td>16</td>
<td>869</td>
<td>15</td>
<td>1000</td>
<td>1112</td>
<td>0.460</td>
<td>2.5</td>
</tr>
<tr>
<td>22</td>
<td>3959</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4050</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>11000</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>12000</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
nLw(412) versus \textit{In Situ} for Common Match-ups

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mean Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIS/Aqua</td>
<td>0.773</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>0.756</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Deep-Water (Depth > 1000m)