

MERIS US Workshop

14 July 2008

MERIS Level 1b processing

Ludovic Bourg

Table Of Content

- Functional Breakdown
- Data extraction and saturation checks
- Radiometric model and calibration
- Stray-light correction
- Product grid and geo-location
- Spatial re-sampling
- Pixels classification
- Meteo Annotations
- Product summary

Functional Breakdown

Data Extraction & Saturation Checks

- data is extracted from L0 according to products limits computations
- time continuity is checked, overlaps removed and gaps filled (if any)
- each sample is checked for saturation and flagged

Radiometric Model

$$X_{b,k,m,f} = \text{NonLin}_{b,m} \left[g(T_f^{\text{VEU}}) . \begin{bmatrix} A_{b,k,m} . \left(L_{b,k,m,f} + SL_{b,k,m} (L_{*,*,m,f}) \right) \\ + Sm_{b,k,m,f} (L_{b,k,m,*}) + g_c (T_f^{\text{CCD}}) . C_{b,k,m} \end{bmatrix} \right] + \epsilon$$

FSR = Full Spatial Resolution data [260 m x 300 m at nadir] RSR = Reduced Spatial Resolution data [1040 m x 1200 m at nadir]

- L: incoming radiance
- X: raw counts
- b,k,m,f: band, pixel, camera, frame
- A: instrument gain
- · C: dark signal
- · Sm: smearing effect
- SL: stray-light (within spectrometer)
- g, g_c: temperature dependency of gain and dark signal
- NonLin: non-linearity

Radiometric Calibration

Invert radiometric model using:

Sm from dedicated virtual band

NonLin from on-ground characterisation

C & A from on-board measurements

g, g_c from on-ground characterisation

Provides $L_{b,k,m,f} + SL_{b,k,m}(L_{*,*,m,f})$

Non-linearity look-up tables

- Non-linearity is significant at CCD output
- It has been characterized as V=f(E)
- Converted into dV=g(V) using calibration line drawn between null illumination and the calibration point (on-orbit data) and modeled
- Scaled to counts using actual gain and band settings

Smearing effect

 Smearing : continuous sensing during charges transfer between CCD image (exposed) to storage (masked) zones.

Actual channel:

$$(t_3-t_2) + (t_1-t_0) = 1.3 \text{ ms}$$
; $t_2-t_1 = 42.7 \text{ ms}$

Virtual smear channel:

Smearing effect and correction

Acquisition timeline:

- The virtual smear band integrates spectra acquired at ~t₁
- Each actual channel of wavelength λ integrates during transfer:
 - From UV to λ at ~t₁ (start of exp.)
 - From λ to NIR at ~t₂ (end of exp.)
- The (next) virtual smear band integrates spectra acquired at ~t₂ Correction scheme:
- Each actual channel is corrected by a weighted average of smear channel values at t₁ and t₂, weights being derived according to channel wavelength:

Sm(b, t₁) = $\frac{X_{Sm}(t_1) \cdot (\lambda_b - 390) + X_{Sm}(t_2) \cdot (1040 - \lambda_b)}{1040 - 390}$

- Solar Irradiance model
- Absolute characterization of reference diffuser reflectivity (on-ground)
- Instrument spectral model from on-ground + on-orbit spectral characterization
- On-board diffuser measurements

- Solar Irradiance model
- Absolute characterization of reference diffuser reflectivity (on-ground)
- Instrument spectral model from on-ground + on-orbit spectral characterization
- On-board diffuser measurements

- Solar Irradiance model
- Absolute characterization of reference diffuser reflectivity (on-ground)
- Instrument spectral model from on-ground + on-orbit spectral characterization
- On-board diffuser measurements

- Solar Irradiance model
- Absolute characterization of reference diffuser reflectivity (on-ground)
- Instrument spectral model from on-ground + on-orbit spectral characterization
- On-board diffuser measurements

Straylight Correction

- Source is scattering & reflection within spectrometer
- Small contribution → can be estimated from degraded

signal

Can be modelled as a point spread function
→ convolutive process

 Correction using modelled PSF and approximate deconvolution

Product Grid and Geolocation

Product grid definition: re-built "ideal instrument" swath

- Across-track: perfectly aligned cameras along ⊥ to track, intercamera overlaps removed, regular on-ground distance sampling (geodesic at WGS-84 ellipsoid surface)
- Along-track: instrument time sampling, gives quasi-regular distance

Geo-location:

- At Tie Points: every 16 pixels in RR, 64 in FR, in both directions (17 x 19 km)
- Geo-location (longitude, geodetic latitude) at ellipsoid surface (WGS-84)
- Altitude and its variability (h, σ_h from GTOPO-05/GTOPO-30)
- Illumination and observation geometry: SZA, SAA, VZA, VAA
- Approximate parallax correction provided over land

Product limits: RR & FR segments

Draduct limiter FD Coans

Scene remains within product

Spatial Re-sampling

- Re-builds ideal swath from actual MERIS FOV: slightly misaligned plane + inter-camera dispersion (see figure)
- Keep instrument measurements: nearest neighbour
- To fill-in a given product pixel:

- Across-track:detector columnselected comparingacross-trackpointing angles
- Along-track: frame
 offset determined
 from known de pointing of selected
 column

Pixels Classification

- Land/water and coastline based on an atlas
- Bright based on radiometry (geometry dependant threshold on reflectance at 443 nm)
- Glint risk based on angular distance to Sun specular reflection direction
- Invalid when no data available (out of swath, gap, all bands saturated)

Meteo Annotations

Are added to geolocation annotations:

- u & v wind components at 10 m
- mean sea level pressure
- Relative humidity at 1000 hPa
- Total column ozone

Interpolated at TP location from ECMWF data (1x1 degree regular grid)

Level 1b product summary

- Calibrated in-band radiances at 1x1.2 km (0.25x0.3 in FR)
 - (i) At actual instrument wavelength: no "smile" correction
- 1121 pixel wide (1300 km) wide, up to 15000 pixels long (2241x2241 pixels or 560x670 km for FR scenes, 4481 pixels wide, up to 12800 long for FR segment)
- Classification and quality flags provided at each pixel
- Detector index provided at each pixel
- Geolocation and meteo provided on a 16x16 sub-grid (64x64 sub-grid in FR)

Accurate geo-referencing for MERIS

- Land community expressed concerns about geo-location accuracy
- A specific postprocessing tool was developed to respond to this need: AMORGOS, that adds to MERIS FR per pixel geo-location accounting for Earth surface elevation
- Inclusion in operational processing is considered

