NRL Remote Sensing: HICO Products & Results

Jeffrey H. Bowles, Wesley J. Moses, Gia M. Lamela, Richard Mied, Karen W. Patterson, and Ellen J. Wagner

Naval Research Laboratory, Washington, D.C. and collaborators from

Center for Advanced Land Management Information Technologies (CALMIT), University of Nebraska-Lincoln, NE, USA.

Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia.

Israel Oceanographic and Limnological Research, Kinneret Limnological Laboratory, Migdal, Israel

08 May 2014; HICO Users' Meeting, Silver Spring, MD

<u>Outline</u>

- Bathymetry/Bottom Type Retrieval
- Surface Velocity Retrieval
- Chlorophyll-a Retrieval
- Sensor Noise Effects
- Challenges
- Conclusion

Bathymetry/ Bottom Type

Lee Stocking Island, the Bahamas

- HICO image acquired on 16 June 2010
- Retrievals made using a LUT-based approach

⁰⁸ May 2014; HICO Users' Meeting, Silver Spring, MD

Coastal Waters Spectral Toolkit (CWST): Look-up Table Approach

Bottom Type Retrieval

EL + LSI

Courtesy: Gia Lamela, NRL

Effect of Adding Mixed Bottom Types

Euclidean Distance Statistics

	Min	Max	Mean	StDev	Points
EL+LSI					
Bottoms	0.000503	11.95546	0.009726	0.076473	1,012,000
EL+LSI+50:50					
Bottoms	0.000474	8.535275	0.009193	0.077433	1,012,000
EL+LSI+25:75					
Bottoms	0.000373	8.695241	0.008164	0.078247	1,012,000

Bottom Depth Retrieval

WITHOUT PROPER BOTTOMS

WITH PROPER BOTTOM TYPES

Courtesy: Gia Lamela, NRL

<u>Outline</u>

- Bathymetry/Bottom Type Retrieval
- Surface Velocity Retrieval
- Chlorophyll-a Retrieval
- Sensor Noise Effects
- Challenges
- Conclusion

Surface Velocity from Global Optimal Solution (GOS) - Developed at NRL

Tracks image features and requires only two images (e.g., May 5, 2007)

- Optimize velocity in all blocks to satisfy tracer conservation equation over image
- Yields dense, differentiable velocity field—suitable for model initiation
- Uniquely adaptable to 2 or more tracers (e.g. IR & sediment) for improved accuracy

Surface Velocity from HICO

- Images taken at 10:05:46 UTC and 11:41:13 UTC on March 22, 2011
- Velocities determined using a three-tracer element (R₆₀₆, R₆₇₄, and R₇₂₀)

08 May 2014; HICO Users' Meeting, Silver Spring, MD

<u>Outline</u>

- Bathymetry/Bottom Type Retrieval
- Surface Velocity Retrieval
- Chlorophyll-a Retrieval
- Sensor Noise Effects
- Challenges
- Conclusion

11

Chl-a Retrieval

- Test the potential of HICO as an operational tool for estimating chl-a concentration in coastal and estuarine waters
- Previous studies (e.g., Moses et al. 2012) using MERIS data demonstrated the reliability of NIRred models for estimating chl-*a* concentration in productive coastal waters
- Current study using multi-temporal data collected after the demise of MERIS

Chl-a Retrieval – Taganrog Bay (Russia)

13

HICO and *in situ* data acquired: July – Sep in 2012 and Feb 201337 stations in 5 campaigns

Units	Min	Max	Median	Mean
mg m ⁻³	8.1	172.77	84.41	82.49

HICO data were atmospherically corrected using Tafkaa.

Chl-a Retrieval

Two-Band NIR-red Model

Chl- $a \propto \left[\overline{R}_{665}^{-1} \times R_{708}\right]$

(Gitelson 1992)

Three-Band NIR-red Model

Chl-
$$a \propto \left[\left(\overline{R}_{665}^{-1} - R_{708}^{-1} \right) \times R_{754} \right]$$

(Dall'Olmo and Gitelson 2005)

<u>Note:</u> \overline{R}_{665} is the average of the reflectances at 662 nm and 668 nm

Chl-*a* = 318.33(2-Band) – 278.15

Chl-*a* = 505.05(3-Band) + 38.916

Comparison with MERIS

- Higher range of chl-a concentrations in the 2012-13 dataset
- Differences in the radiometric calibration and atmospheric correction
- Higher spatial and temporal variation in the 2012-13 dataset

Chl-a Maps

25 Aug 2012

The chl-*a* estimates were quite accurate in spite of the high spatial and temporal variations of chl-*a* concentration in the bay

(Moses et al. 2013)

Changes in the chl-*a* concentration in the Taganrog Bay between 25 Aug and 27 Aug 2012.

Lake Kinneret (Israel)

11 March 2013

The presence of phycoerythrin and phycocyanin was confirmed by lab analysis of water samples

MODIS R645

<u>Outline</u>

- Bathymetry/Bottom Type Retrieval
- Surface Velocity Retrieval
- Chlorophyll-a Retrieval
- Sensor Noise Effects
- Challenges
- Conclusion

Sensor Noise Effects – Why Study?

- Inherent noise in the data affects everything retrieved from the data
- The Signal-to-Noise Ratio (SNR) is often specified as a single number (maximum based on a standard target)
- Prescribed SNR different from effective SNR
- Characterize the effect of HICO's SNR on the retrieval of biophysical parameters in typical coastal water conditions

Noise Study - Approach

- Generate Rrs spectra using pre-defined biophysical parameters
- Propagate the spectra through the atmosphere to generate at-sensor radiance
- Add noise to the at-sensor radiance
- Convert the noise-added at-sensor radiance to at-surface Rrs
- Retrieve parameters from noise-added Rrs and compare the results to the original parameters

⁰⁸ May 2014; HICO Users' Meeting, Silver Spring, MD

Improving SNR by Sensor Design

<u>Note</u>: D = diameter of the aperture; f = focal length; $\lambda_b = blaze$ wavelength

<u>Nominal HICO Setting</u>: D = 0.019 m; f = 0.067 m; λ_b = 400 nm.

Improving SNR by Changing the Aperture Size

F-Stop = [Focal length/Diameter of the aperture]

⁰⁸ May 2014; HICO Users' Meeting, Silver Spring, MD

SNR Impact on Retrievals

Retrieved	Avg. Percent Error				
Parameter	f/3.5	f/1.0	Imp	rovement	t (%)
Cwvap	15.52	0.47		96.97	
$ au_{550}$	15.1	6.83		54.77	
Rrsblue	181.46	9.76		94.62	
Rrs_{green}	36.73	3.3		91.01	
Rrs_{red}	21.38	1.87		91.21	
Rrs_{NIR}	48.94	2.6		94.69	

Danamatan	Average Percent Error				
Farameter	f/3.5	f/1.0	Improvement (%)		
Chl-a	53.27	26.22	50.78		
асром(440)	62.18	16.93	72.77		
SPM	25.93	9.14	64.75		

Improvement (%) =
$$\left(\frac{[\text{Error}]_{\text{F-stop=3.5}} - [\text{Error}]_{\text{F-stop=1.0}}}{[\text{Error}]_{\text{F-stop=3.5}}}\right) \times 100$$

<u>Outline</u>

- Bathymetry/Bottom Type Retrieval
- Surface Velocity Retrieval
- Chlorophyll-a Retrieval
- Sensor Noise Effects
- Challenges
- Conclusion

Challenges

- Second order light in the near infrared wavelengths
- No on-board calibration; vicarious techniques adopted
- Post-launch spectral shifts shifts corrected for through continual comparison with concurrently acquired MODIS data
- Spectral etaloning more in the NIR region; data are smoothed with a Gaussian filter to minimize etaloning effects
- Corrections to HICO data described by Gao et al. (2012)
- A maximum of only 16 images per day (capacity being increased)
- Only intermittent temporal coverage; but the pointing capability of HICO helps

Unprecedented spatial and spectral detail from space

Taganrog Bay, Russia

Contact:

wesley.moses@nrl.navy.mil

08 May 2014; HICO Users' Meeting, Silver Spring, MD

29

<u>References</u>

- Gao, B. -C., Li, R. -R, Lucke, R. L., Davis, C. O., Bevilacqua, R. M., Korwan, D. R., Montes, M. J., Bowles, J. H., and Corson, M. R. (2012). "Vicarious calibrations of HICO data acquired from the International Space Station", *Applied Optics*, **51**(14): 2559-2567.
- Lucke, R. L., Corson, M., McGlothlin, N. R., Butcher, S. D., Wood, D. L., Korwan, D. R., Li, R. R., Snyder, W. A., Davis, C. O., and Chen, D. T. (2011). "Hyperspectral Imager for the Coastal Ocean: instrument description and first images", *Applied Optics*, 50(11): 1501-1516.
- Moses, W. J., Bowles, J. H., Lucke, R. L., and Corson, M. R. (2011). "Impact of signal-tonoise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters," *Optics Express*, **20**(4): 4309-4330.
- Moses, W. J., Gitelson, A. A., Berdnikov, S., Saprygin, V., and Povazhnyi, V. (2012). "Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters – The Azov Sea case study", *Remote Sensing of Environment*, **121**: 118-124.
- Moses, W. J., Gitelson, A. A., Berdnikov, S., Bowles, J. H., Povazhnyi, V., Saprygin, V., and Wagner, E. J. (2014). "HICO-Based NIR-red Algorithms for Estimating Chlorophyll-a Concentration in Productive Coastal Waters", *IEEE Geoscience and Remote Sensing Letters*, **11**(6): 1111-1115.

Comparison with MERIS Results

Images acquired over the Taganrog Bay on 13 July 2010

Difference in the slope of the regression is a function of, among other factors, the difference in the method used for atmospherically correcting the HICO and MERIS images.