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Curtin University:
e HICO User’s since 2011

* Previous experience with airborne hyperspectral
surveys, radiative transfer, bio-optics...

* |[nterest in bathymetry & habitat mapping for
environmental management

Research question:

e Can HICO data be used to detect change In
bathymetry through time?



Study site: Shark Bay, Western Australia

Challenges in detecting trend and seasonal changes in bathymetry derived from HICO
imagery: a case study of Shark Bay, Western Australia

e World Heritage Area
e Very remote, approx. 700 km
(440 miles) North of Perth
e 12 species of seagrass that
cover approx. 4200 km?
(Walker et al. 1988)

 The rectangles represent different
swath orientations of the HICO
sensor.




HICO image processing for assessing temporal change

1. Removing the atmospheric radiance signal from at-sensor top-of-
atmosphere radiance (Tafkaa-6S)
* P = Ry

2. Correcting for sun-glint and air-to-water interface
Rr‘s N rrsdeg/int

3. Shallow water inversion model to retrieve depth and uncertainty
° rrsdeglint = Depth

4. Post-image smoothing
5. Tide Correction
6. Geo-registration

7. Change Detection Analysis
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3. Retrieving Bathymetry
Bottom Reflectance Un-mixing Computation-of the Environment (BRUCE) model

e Physics-based shallow water model (Klonowski et al. 2007)

1rs(A) = f(a(d), bp(2), p(4), H, 6y, 6,,)

l

Trs(/l) — f(P; G, X, H, BsgiBsedi 9171 Hw)

Semi-analytical, and functions of scalar parameters

* Non-linear optimisation (Levenberg-Marquardt) algorithm:

FindP, G, X, H, B, and Bﬂsuch that

model __ measured ~
r rs r rs =0

N
. Py 2
cost function = (Trs,i B 7"rs,i)
i




3. Retrieving Bathymetry
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model

Propagation of spectrally correlated sensor and environmental noise through the
inversion process (Hedley et al. 2010; 2012)




3. Retrieving Bathymetry
Bottom Reflectance Un-mixing Computation of the Environment{(BRUCE) model

Why use the UR-LM method? The standard approach of using a fixed initial guess to invert
each noise perturbed spectra gives high uncertainty due the convergence to local minima
by the LM method.

Depth = (4.37 £ 5.57) meters = 127% uncertainty

- . {| o045 ,'
08 ) 1o 0.40 ;
o, . —_
=06 Group 2 Outliers g 035/
;—; % 0.30}
m
& 02 0.250;
D‘OEI Group 1 0.20
- : - - - 0.15 - : - : - :
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
0.6 . . : : . : : 0.35 : . . : . .
0.30f}
< 0.5 wely .- : 025
2 04} 0.08 ’ ) 0.20f
Ty) - - B
*—503_ s 0.15
8 0.06 Y N “ 0.10}
0.2 .o e 0.05/
ol 0.04 L e 0.00}
'TI 0.59 0.60 0.61 0.62 0.63 -0.05¢ —
' 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
0.090f - . - —_— . . . . . . .
0.085/ > 4 : — 30} g
0.080/ y a5l
8 0075 S 0.00012
< 0.070 0.00010
0.065 0.00008
0.060 S
5 0.00006 :
0.055 |, 059 060 061 062 063
5 10 15 20 25 30 35 40 ' 5 10 15 20 25 30 35 40

Retrieved depth (m)




3. Retrieving Bathymetry
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model

A brief search of parameter space to find the optimal initial guess parameters, P, G, X, H, B,

and B, for each HICO-r, pixel (Garcia et al., under review);

BRUCE model Optimized model parameters
Update-Repeat
LM optimization randomly perturbed by 10% of
P=0.05; G=0.05; X=0.01; p . their value and used as input
(10 iterations)

H=4.0; B,4=0.02; B,,,,=0.02 to next inversion attempt

HICO derived r(A)

10 sets of optimized
model parameters

I30' GO' XO' HO' Bsed,O' B

I39' G9' X9' H9' Bsed,9' B

grass,0

Initial guess with lowest EiEE

Euclidean distance selected
BRUCE model LM
optimization
Invert noise-perturbed
spectra (step 2)



aphy(440), P

bip(550), X

Bsaagrass

3. Retrieving Bathymetry
Bottom Reflectance Unmixing Computation of the Environment {(BRUCE) model

The UR-LM method guides the LM optimization to the optimum minimum (Group 1).

Depth = (0.60 = 0.01) meters
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3. Retrieving Bathymetry
Bottom Reflectance Un-mixing Computation of the Environment(BRUCE) model
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4. Post-processing Image Smoothing and Tide Correction

e Bathymetry images contain impulse (salt-and-pepper) noise, which are
typically add abrupt and unrealistic changes in depth

* Removing these pixels with a two-step smoothing approach:
1. Impulse noise pixel selection and subsequent replacement with an
adaptive median filter
2. Application of 2" order binomial smoother

¢ RawDepth A A Detected impulse noise == Depth without impulse noise ~ === Final smoothed product
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4. Post-processing Image Smoothing and Tide Correction

Smoothed Bathymetry and Uncertainty




5. Post-processing Image Smoothing and Tide Correction
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delineate changes in depth caused by
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e Lack of in situ tide height data, and
therefore an empirical tide correction
technique was developed
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6. Geo-location Issues

Time series analysis requires relatively high geolocation accuracy, to ensure
that a change in depth at two instances in time is a real temporal change

A geolocation accuracy of 1/5% of pixel
’ is needed to detect 90% of real

f temporal changes (Dia and Khorram,
1998) = 20m for HICO

The provided Geographic Lookup Tables
(GLTs) are inadequate for time series
analysis
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6. Geo-location Issues

Geo-Registration using Ground Control Poin

A geolocation accuracy of 1/5™ of pixel
is needed to detect 90% of real

temporal changes (Dia and Khorram,
1998) = 20m for HICO

& Test Point A M Test Point B ETest Point C M Test Point D

=
=
=
w
m

! i D

£
-
=
W
-
=
[=]
[=2
o
b
o £
= o
- =
[
‘L'JIJ
g =
=
S E
7 2
L &=
=
=
1]
ar
=
o
=2
[y

REFERENCE IMAGE




UB
wv
=
©
o
©
c
O
o
(&
Q
o
Q
©
Q
o0
{ e
©
i o
O
~N

ible to detect temporal change (at two time points) above uncertainty?

it poss

Is

21-Jan-12

1200 1300 lth 1500
02-Apr-12

1100

1000

1200 1300 1400 1500
08-Aug-12

1100

1000

1100 1200 1300 1400 1500

1000

900

200

900

14-Dec-11

1400 1500

1300

1200
27-Feb-12

1100

1000

1200 1300 1400 1500
04-Jun-12

1100

1000

1100 1200 1300 1400 1500

1000

900

200

9200

19-Nov-11

1400 1500

13200

1200
07-Feb-12

1100

1000

1200 1200 1400 1500
01-Jun-12

1100

1000

1100 1200 1300 1400 1500

1000

900

151
104
5

(w) yaaaq

200

900

Column Pixel Position




— 7/”7””

7. Change detection analysis

Is it possible to detect temporal change (at two time points) above
uncertainty?

Pixels have to satisfy the following two criteria to be classed as having

observed change:

1. Adifference in depth (between two time points) greater than the
baseline variability (0.36m);

2. Per-pixel t-test analysis; Null hypothesis of “no change in depth” is
rejected for pixels with p < 0.05 (5% significance level).



Change detection analysis of

HICO-derived, tide corrected,

bathymetry of the Faure Sill,

between the dates of:

(a) 14-Dec-2011 and 21-Jan-
2012;

(b) 21-Jan- and 27-Feb-2012;

‘ .Deep-water - No Change k (C) 27'Feb' aﬂd O4‘Jun‘2012;
M Land < (d) 04-Jun- and 08-Aug-2012

Separate image-based tide
corrections were performed for
the dashed magenta regions
presented in (a).
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ABSTRACT

The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the
first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal
environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances
to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively
render the geophysical parameter imprecise and potentially unusable if the objective s to analyze trends andfor
seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICD imagery:
{2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3] prop-
agation of uncertainty due to environmental noise throwgh the bathymetry retrieval process; (4) issues relating
to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of
the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable
above uncertainty is also addressed. To this end, nine HICO images spanning Movemnber 2011 to August 2012,
owver the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate
that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within
this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncer-
tainty of less than 4= 20%. A per-pixel t-test analysis between derived bathymetry images at successive
timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy
of HICO is relatively poor and needs further improvements before extensive time series analysis can be
perfarmed.

i© 2014 Elsevier Inc. All rights reserved.




Some recent PR....
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IN A world first, a Curtin University physicist used data from the International Space Station to map coastal
bathymetry (underwater terrain).

Curtin PhD candidate Rodrigo Garcia says they chose Shark Bay for the project because the World Heritage listed site has the
largest-known seagrass meadows.

“We were just thinking of what we can use the data there for, whether we can help azsess changes in depth for benthos,” he



Conclusion
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We investigated challenges faced with temporal analysis of HICO-derived
bathymetry

e Search for optimal initial guess produced precise retrievals of bathymetry for
shallow water pixels (< 6 m)

e Retrieved bathymetry “can” detect temporal changes in depth of less than 1 m
e Post-processing image smoothing and tide correction aid temporal analysis

e Atmospheric correction still requires further improvements




Community uptake

Increase user numbers, I.e. bigger user community —
some problems may be solved faster

Workshops, special sessions etc.
Press releases

|IOCCG Newsletter

Special HICO edition in journal?

Open access — data + code
Demonstration datasets
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Additional material....
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