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Curtin University: 
 HICO User’s since 2011 
 Previous experience with airborne hyperspectral 

surveys, radiative transfer, bio-optics… 
 Interest in bathymetry & habitat mapping for 

environmental management 
 
Research question: 
 Can HICO data be used to detect change in 

bathymetry through time?  
 

 
 



Study site: Shark Bay, Western Australia 

• World Heritage Area 
• Very remote, approx. 700 km 

(440 miles) North of Perth 
• 12 species of seagrass that 

cover approx. 4200 km2 
(Walker et al. 1988) 

Challenges in detecting trend and seasonal changes in bathymetry derived from HICO 
imagery: a case study of Shark Bay, Western Australia 

• The rectangles represent different 
swath orientations of the HICO 
sensor. 



HICO image processing for assessing temporal change 

1. Removing the atmospheric radiance signal from at-sensor top-of-
atmosphere radiance (Tafkaa-6S) 
• 𝜌𝜌∗   →   𝑅𝑅𝑟𝑟𝑟𝑟 

 
2. Correcting for sun-glint and air-to-water interface 

• 𝑅𝑅𝑟𝑟𝑟𝑟 →   𝑟𝑟𝑟𝑟𝑟𝑟deglint 

 
3. Shallow water inversion model to retrieve depth and uncertainty 

• rrs
deglint    Depth 

 
4. Post-image smoothing 

 
5. Tide Correction 

 
6. Geo-registration 

 
7. Change Detection Analysis 



Atmospheric correction & 
sunglint correction 

• Tafkaa-6S Atmocor 
• Used co-incident MODIS Aqua 

imagery to estimate τ(550), 
cwvap, ozone 

• Sunglint ΔRrs(750) 
• Basic land/cloud masking if 

Rrs(750 nm) > Rrs(400 nm) 
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Study site: Shark Bay, Western Australia 

HICO rrs
deglinted imagery spanning 10 months: November 2011 to August 2012 



3. Retrieving Bathymetry 
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model 

• Physics-based shallow water model (Klonowski et al. 2007) 
 

𝑟𝑟𝑟𝑟𝑟𝑟 𝜆𝜆 = 𝑓𝑓 𝑎𝑎 𝜆𝜆 , 𝑏𝑏𝑏𝑏 𝜆𝜆 , 𝜌𝜌 𝜆𝜆 , 𝐻𝐻, 𝜃𝜃𝑣𝑣, 𝜃𝜃𝑤𝑤  
 
 
 

𝑟𝑟𝑟𝑟𝑟𝑟 𝜆𝜆 = 𝑓𝑓 𝑷𝑷, 𝑮𝑮, 𝑿𝑿,𝑯𝑯, 𝑩𝑩𝒔𝒔𝒔𝒔, 𝑩𝑩𝒔𝒔𝒔𝒔𝒔𝒔, 𝜃𝜃𝑣𝑣, 𝜃𝜃𝑤𝑤  
 

Semi-analytical, and functions of scalar parameters 
 
 

• Non-linear optimisation (Levenberg-Marquardt) algorithm: 
 

 Find P, G, X, H, Bsg and Bsed such that 
 rrs

model – rrs
measured 

 ≈ 0  

cost function =  � 𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖� 2
𝑁𝑁

𝑖𝑖

 

 



3. Retrieving Bathymetry 
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model 

Propagation of spectrally correlated sensor and environmental noise through the 
inversion process (Hedley et al. 2010; 2012) 
 

20 noise perturbed shallow water spectra: 𝒓𝒓𝒓𝒓𝒓𝒓 + 𝜹𝜹𝒓𝒓𝒓𝒓𝒓𝒓  

P ± ΔP 
G ± ΔG 
X ± ΔX 
H ± ΔH  
Bsd ± ΔBsd 
Bseg ± ΔBseg 

Estimate 𝜹𝜹𝒓𝒓𝒓𝒓𝒓𝒓 by sampling an 
“homogenous” deep water region 

Invert 
with 

BRUCE 
20x 



3. Retrieving Bathymetry 
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model 

Why use the UR-LM method? The standard approach of using a fixed initial guess to invert 
each noise perturbed spectra gives high uncertainty due the convergence to local minima 
by the LM method. 

Depth = (4.37 ± 5.57) meters  127% uncertainty 



3. Retrieving Bathymetry 
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model 

A brief search of parameter space to find the optimal initial guess parameters, P, G, X, H, Bsg 
and Bsed for each HICO-rrs pixel (Garcia et al., under review); 

BRUCE model 
 

P=0.05; G=0.05; X=0.01; 
H=4.0; Bsed=0.02; Bgrass=0.02 

HICO derived rrs(λ) 

Update-Repeat 
LM optimization 

(10 iterations) 

Optimized model parameters 
randomly perturbed by 10% of 
their value and used as input 

to next inversion attempt 

10 sets of optimized 
model parameters 

 

P0, G0, X0, H0, Bsed,0, Bgrass,0 
……… 

P9, G9, X9, H9, Bsed,9, Bgrass,9 Initial guess with lowest 
Euclidean distance selected 

BRUCE model LM 
optimization 

Invert noise-perturbed 
spectra (step 2) 



3. Retrieving Bathymetry 
Bottom Reflectance Unmixing Computation of the Environment (BRUCE) model 

The UR-LM method guides the LM optimization to the optimum minimum (Group 1). 

Depth = (0.60 ± 0.01) meters 



3. Retrieving Bathymetry 
Bottom Reflectance Un-mixing Computation of the Environment (BRUCE) model 



4. Post-processing Image Smoothing and Tide Correction 

• Bathymetry images  contain impulse (salt-and-pepper) noise, which are 
typically add abrupt and unrealistic changes in depth 
 

• Removing these pixels with a two-step smoothing approach: 
1. Impulse noise pixel selection and subsequent replacement with an 

adaptive median filter 
2. Application of 2nd order binomial smoother 

 



4. Post-processing Image Smoothing and Tide Correction 

Smoothed Bathymetry and Uncertainty 



5. Post-processing Image Smoothing and Tide Correction 

• Removing influence of tide to 
delineate changes in depth caused by 
resuspension and sedimentation 
 

• Lack of in situ tide height data, and 
therefore an empirical tide correction 
technique was developed 



6. Geo-location Issues 

N 

A 

C 

B 

D 

Time series analysis requires relatively high geolocation accuracy, to ensure 
that a change in depth at two instances in time is a real temporal change 

The provided Geographic Lookup Tables 
(GLTs) are inadequate for time series 
analysis 

A geolocation accuracy of 1/5th of pixel 
is needed to detect 90% of real 
temporal changes (Dia and Khorram, 
1998)  20m for HICO 



6. Geo-location Issues 

A geolocation accuracy of 1/5th of pixel 
is needed to detect 90% of real 
temporal changes (Dia and Khorram, 
1998)  20m for HICO 

Geo-Registration using Ground Control Points 



7. Change detection analysis 

Is it possible to detect temporal change (at two time points) above uncertainty? 



7. Change detection analysis 

Is it possible to detect temporal change (at two time points) above 
uncertainty? 
 
Pixels have to satisfy the following two criteria to be classed as having 
observed change: 
1. A difference in depth (between two time points) greater than the 

baseline variability (0.36m); 
2. Per-pixel t-test analysis; Null hypothesis of “no change in depth” is 

rejected for pixels with p < 0.05 (5% significance level). 



Change detection analysis of 
HICO-derived, tide corrected, 
bathymetry of the Faure Sill, 
between the dates of: 
(a) 14-Dec-2011 and 21-Jan-

2012; 
(b) 21-Jan- and 27-Feb-2012; 
(c) 27-Feb- and 04-Jun-2012; 
(d) 04-Jun- and 08-Aug-2012 
 
Separate image-based tide 
corrections were performed for 
the dashed magenta regions 
presented in (a). 





Recent publication…. 



Some recent PR…. 



Conclusion 
We investigated challenges faced with temporal analysis of HICO-derived 
bathymetry 
 
• Search for optimal initial guess produced precise retrievals of bathymetry for 

shallow water pixels (< 6 m) 
 

• Retrieved bathymetry “can” detect temporal changes in depth of less than 1 m 
 

• Post-processing image smoothing and tide correction aid temporal analysis 
 

• Atmospheric correction still requires further improvements 

rodrigo.garcia@postgrad.curtin.edu.au  



Community uptake  
Increase user numbers, i.e. bigger user community – 
some problems may be solved faster 

 
 Workshops, special sessions etc. 
 Press releases 
 IOCCG Newsletter 
 Special HICO edition in journal? 

 
 Open access – data + code 
 Demonstration datasets 
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Additional material…. 
 





Tide offsets 
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