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Hyperspectral Imager for Coastal Oceans (HICO)




HICO Sensor Parameters

Parameter

Performance

Rationale

Spectral Range

350 to 1070 nm

All water-penetrating wavelengths plus
Near Infrared for atmospheric correction

Spectral Channel Width 5.7 nm Sufficient to resolve spectral features
Number of Spectral 128 Derived from Spectral Range and
Channels Spectral Channel Width

Signal-to-Noise Ratio >200to 1

for water-penetrating
wavelengths

for 5% albedo scene
(10 nm spectral binning)

Provides adequate Signal to Noise Ratio
after atmospheric removal

Sensor response to be insensitive to

L o < E0 res _
Polarization Sensitivity oY polarization of light from scene
Ground Sample Distance Adequate for scale of selected coastal
) 100 meters
at Nadir ocean features
Scene Size 50 x 200 km Large enough to capture the scale of

coastal dynamics

Cross-track pointing

+45 to -30 deg

To increase scene access frequency

Scenes per orbit

1 maximum

Data volume and transmission constraints




HICO on Japanese Module Exposed Facility




HICO Processing Activity in APS
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Processing Adjustment

Normalized Water Leaving Radiance (nLw) values derived from:

* sensor measurement
e radiometric calibration
e atmospheric correction algorithm

Changes occurred in HICO sensor between lab characterizations and
installation on ISS

Sensor calibration degrades over time

Atmospheric Correction used to derive nLw

Vicarious Calibration provides updated gains to improve accuracy of
data recording / radiometric calibration / atmospheric correction system



Vicarious Calibration Process

Update sensor gain factors

» Sensor Gain(A) = Vicarious L,(A)

Record satellite data

Measured L,,(A)
» Apply sensor gain to raw data and

reprocess data products

e Measure top of
atmosphere radiance,
Measured L,,(A)

Convert water leaving radiances
to top-of-atmosphere radiance

Satellite Sensor

L

e Use in situ nL,(A) data to
estimate top of atmosphere
radiance, Vicarious L,,,(A), by
performing inverse of
atmospheric correction

Sensor Measured L,,,(A) = APS Processing Vicarious L, (1)

Atmospheric
Scattering

Atmospheric Correction
Tables & Coefficients

e Aerosol
e Rayleigh

e Aerosol Correction
e Rayleigh Correction
e Gas Absorption

...
...
g
g
......
oy
by
by
oy
¥,

v t
Derived In situ
anaterO\*) anaterO\*)

Inverse of atmospheric
correction adds
atmospheric components
to in situ nL, (1) to get
Vicarious L, (1)




Atmospheric Correction Algorithm

Goal: To retrieve the normalized water-leaving radiance (,L,) accurately from
the spectral measurements of the TOA radiance L,(A)

Gordon-Wang atmospheric correction algorithm is used in this study

TOA atmospheric path radiance:
Lt= Lwc * Lg * LW * Lr * La +Lra

Terms represent white-cap, glint, water, rayleigh, aerosol and molecular
scattering radiances

Inverting previous equation to solve for L, leaves:
Ly=L -(L,+L,+L +L,+L

ra)

Normalized water leaving radiances L, can be computed from L, and sensor
geometry



Radiance Components in Atmospheric Correction

e Lr=f0* Ve * pPressure 9
» f0=TOA solar irradiance 8+
* V,.uer = Volume Scattering Function 7

e Pressure = function of path radiance
* V,.uer and pressure terms depend on

sensor/solar geometry

e Solarirradiance, f0, interpolated to HICO
wavelength at HICO bandwidth

Radiance (mW/cmzlpm/sr)
(5 x 5 Box Mean)

e Wavelengths of Lr tables have
to match wavelength center — T
400 500 600 700 800 900
and bandwidth of sensor Lt Wavelength (nm)
data set

*MODIS-retrieved Lt, L, La, and nLw for 412, 443, 488, 531,
547, 667, 748, and 869 (nm) wavelengths at the AERONET-OC
location for the Gulf of Mexico, May 4, 2010.



Vicarious Calibration 2 Step Process

Aerosol Scattering Radiance, La

Emissivity derived from signal response at 748 and 868 nmeter
Emissivity used to select aerosol model

Aerosol model used to establish La for processing pixel

Aerosol model selection process discussed in H.R. Gordon, M. Wang,
“Retrieval of water-leaving radiance and aerosol optical thickness
over the oceans with SeaWiFS: a preliminary algorithm”, Applied
Optics January 1994, Vol 33, No 3, Pg 443

Vicarious Calibration requires a 2 step process
e First step generates gains for NIR wavelength bands
e This stabilizes the gains influencing the emissivity derivation
e Second step generates gains for visible wavelength bands



Gain and Offset Computation

e Objective of vicarious calibration is to compute gains and offsets which
transform Lt to vLt values that compute insitu nLw values after
atmospheric correction is performed

e @Gains and offsets can be computed

e Single date case: ratio of vicarious Lt and measured Lt using notation
of “gain = vLt / Lt” where “offset = 0”

e Multiple date case
e Use multiple dates to create Lt and vLt pairings
e Perform linear regression to generate equation (y = mx + b)
e Let gain = m and offset = b, yields
e vLt = (gain) Lt + offset

e After gain/offsets are computed scenes are reprocessed using new gain
and offset for each band



Current In Situ Data Used for Vicarious Calibration

Marine Optical Buoy (MOBY) is managed by NOAA

Moored in uniform water volume near Lanai, Hawaii

Performs several atmospheric measurements

Remote Sensing Reflectance at 510nm

0.0300

[ Tegend ] ikl
05°x

Also measures Inherent Optical Properties (IOPs) and goibe
Normalized Water-leaving Radiance (nL,)

0.0225

0.0150

SeaWiFS v8

MOBY provides in situ data to perform vicarious L e
. L] E :{? 2&;23‘.?_“07
calibration for several NASA / NOAA sensors R -l
:&g%m * 19

$.0000

0000 0.0075 0.0150 0.0225 0.0300
in situ (rrs)

MOBY data stored in Ca/Val database for vicarious
calibration of hyperspectral data stream



Aerosol Robotic NETwork - Ocean Color (AERONET-OC)

e Managed by NASA Goddard Space Flight
Center (GSFC)

e Over 500 locations that record atmospheric
data with 14 locations recording in-water
data which include:

e Long Island Sound Coastal Observatory
(LISCO)

e Venice Acqua Alta Oceanographic
Tower (AAQOT)

e New Gulf of Mexico WaveCIS location
managed by NRL

e AERONET data stored in Cal/Val database for
vicarious calibration of multispectral
HICO_MODIS data stream

Long Island Sound Coastal  Venice, Italy
Observatory (LISCO) (AAOT)



Representative True Color HICO Scenes

MOBY: 09/24/11 AAOT: 07/11/10 LISCO: 07/11/10 Pensacola: 06/02/11



Vicarious Calibration Hyperspectral Verification

e 4 MOBY samples used
to train vicarious
calibration

Scatter plot of 4
separate MOBY
samples used to test
MOBY in situ and HICO
nLw values

Before and after
vicarious calibration

Wavelength locations:
502 and 525 nm
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Vicarious Calibration Multispectral Verification

HICO -MODIS (AAOT): Before Vcal nlw HICO-MODIS (AAOT): After Vcal nlw
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Vicarious Calibration In Situ Data

e Vicarious Calibration process shown for MOBY data has also
been performed with AERONET data

e Gains/offset can be generated for each AERONET
station

e Gains/offsets can be generated for entire set of
AERONET stations grouped together

e |nsitu data for vicarious calibration can also be provided by
collected multi or single date field data



Vicarious Gain/Offset Validation

©2012 Google ‘ [ 3
Data SIO, NOAA, U.S. Navy. NGA, GEBCO ©2010 008 e

Image U.S. G‘eutog ical'Survey

Imagery Dates: Feb 1, 2008 - Jan 4,2012 lat 30.418815° lon -87.128292° elev -17ft Eyealt 2249 m|

Pensacola Beach In Situ Data Stations



Vicarious Adjustment: 06/02/11 Pensacola Beach: PB05
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Vicarious Adjustment: 06/02/11 Pensacola Beach: PB06
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Vicarious Adjustment: 06/02/11 Pensacola Beach: PB14
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Vicarious Adjustment: 06/02/11 Pensacola Beach: P21
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Future Research Directions

e Improve gain/offset calculation for blue and NIR regions
e Update solar irradiance to derive Lr more closely with HICO wavelengths
e |nvestigate causes for nLw rise in the NIR region
e |dentify aerosol model is selected by vicarious calibration code

e Apply new gain/offset to more scenes and compare with more in situ data

e Apply new gain/offset within automated processing of HICO data



Summary

Performed vicarious calibration for HICO and HICO-MODIS data using
training set of MOBY and AERONET data, respectively

Verified results of updated gains from vicarious calibration using training
set by applying them to test set of HICO and HICO-MODIS data

Validated results of vicariously calibrated gains by matching them with
Pensacola Beach in situ data

Determined additional tasks needed to refine results
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Questions

Thank you for your interest in this project
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