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A B S T R A C T   

Generation of consistent multi-sensor datasets is critical to the assessment of long-term global changes using 
satellite-borne instruments. Recent research suggests, however, that a fundamental assumption in satellite ocean 
color data processing concerning the calibration of the long near infrared band (i.e., 865 nm for MODIS) may 
introduce sensor-specific biases in space and/or time, which may also contribute to cross-sensor inconsistency in 
the derived reflectance data products. As such, it is necessary to assess the calibration of this band across sensors 
– performed here for MODIS/Aqua and VIIRS/SNPP using ‘simultaneous same view’ matchups (SSV; similar to 
simultaneous nadir overpass, but allowing for non-nadir measurements). Towards that end, we assess geometric, 
temporal, and spatial homogeneity metrics to identify SSVs, and develop a band-shifting approach applicable 
within standard satellite data processing routines to resolve expected spectral differences in the radiometry. We 
find top-of-atmosphere (TOA) radiance data from VIIRS/SNPP long near infrared band to be approximately 3% 
higher than the corresponding MODIS/A data. With the expectation that cross-calibrating the NIRL should 
improve cross-sensor continuity of downstream geophysical products (e.g., chlorophyll-a), we reprocessed VIIRS 
data using updated calibration coefficients. While we noticed many minor improvements in cross-sensor conti
nuity in such data products, large-scale geographic and temporal biases between these two datasets still remain. 
These discontinuities may be the result of disparate errors in polarization correction or atmospheric correction, 
both of which are modulated by radiant path geometry.   

1. Introduction 

Satellite ocean color instruments have provided otherwise unat
tainable data on spatial and temporal trends in the light field emanating 
from the world’s oceans. However, the physical location of these sensors 
(on orbit) leads to difficulties in (1) discriminating oceanic from atmo
spheric signals in the measured total radiance signal; (2) calibrating and 
validating derived geophysical parameters (e.g., chlorophyll-a concen
tration; Ca); and (3) cross-calibrating multiple sensors towards longer- 
term datasets with minimal between-sensor uncertainties. Of these, 
the latter is particularly important in a climate context, as the usable life 
of any individual sensor (10 to 20 years at the absolute maximum) is 
likely too short to capture climate-scale variability (e.g., Lee et al., 
2010). 

Numerous previous works have investigated such climate-scale 
variability, using either single-sensor (Gregg et al., 2005; Henson 

et al., 2010; Siegel et al., 2013; Vantrepotte and Mélin, 2011) or merged- 
sensor (Gregg and Rousseaux, 2014; Lee et al., 2010; Signorini et al., 
2015) datasets. These studies largely show no trend or a declining trend 
in global Ca, with large regional or basin-scale variability. Nevertheless, 
most of them note difficulties in statistical assessments of their respec
tive datasets, owing to uncertainties in merging data from multiple 
sensors, or in drawing conclusions from datasets of too short duration. 
For example, Signorini et al. (Signorini et al., 2015) considered 16 years 
of MODIS/A [Moderate Resolution Imaging Spectroradiometer onboard 
Aqua] and SeaWiFS [Sea-viewing Wide Field-of-View Sensor onboard 
OrbView2] data. While they note general agreements between trends as 
derived using these two sensors (and a merged-sensor dataset), data 
from South Atlantic showed a positive trend using 11 years of SeaWiFS 
data, but a negative trend using either 11 years of MODIS data or the 
merged-sensor dataset. Gregg and Rousseaux (Gregg and Rousseaux, 
2014) noted that Ca time series that switch from SeaWiFS to MODIS data 
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always showed a negative trend due to a bias between the sensors, and 
thereby recommended other techniques to reduce cross-sensor differ
ences (Gregg and Casey, 2010). In contrast, for waters offshore China, 
Zhang et al. (Zhang et al., 2006) noted strong continuity (with no sig
nificant bias) in Ca between the same two sensors. 

Such cross-sensor comparisons, by definition, require aggregations of 
large quantities of data, with globally and/or regionally averaged sta
tistics obscuring the complexities of the differences between sensors 
(Djavidnia et al., 2010; Mélin, 2010). Indeed, Djavidna et al. (Djavidnia 
et al., 2010) found overall continuity between MODIS- and SeaWiFS- 
derived Ca, but noted significant modulations of this relationship both 
regionally and seasonally. Similarly, Melin et al. (Mélin et al., 2016) 
found spatiotemporal patterns of discontinuities between SeaWiFS, 
MODIS, and MERIS [Medium Resolution Imaging Spectrometer onboard 
Envisat] remote sensing reflectance (Rrs, in sr− 1) products. For demon
stration of these discontinuities between MODIS and VIIRS/SNPP 
[Visible-Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi 
National Polar-orbiting Partnership (SNPP)], Fig. 1 shows the percent 
difference in Rrs and Ca as calculated using NASA default processing 
routines (specifically, [(MODIS-VIIRS)/MODIS], see Section 2.4. for 
processing details). Numerous potential sources of such discontinuities 
have been offered, including temporal differences in overpass times 
(Zhang et al., 2006), data quantity (Barnes and Hu, 2015), viewing ge
ometry (Barnes and Hu, 2016), solar geometry (Djavidnia et al., 2010; 
Mélin et al., 2016; Zibordi et al., 2012), as well as Ca and aerosol optical 
thickness (Zibordi et al., 2012). 

Amidst these potential sources of uncertainty, a fundamental 
assumption in system vicarious calibration (SVC) and atmospheric 
correction of satellite ocean color data concerns the long near infrared 
(NIRL) band. In effect, the pre-launch calibration of the NIRL band is 
considered sufficient for NASA’s current operational SVC and AC pro
cedures. This is supported by findings of Wang and Gordon (Wang and 
Gordon, 2002) that, based on radiative transfer simulations, moderate 
(±5%) errors in NIRL calibration have minimal impacts (2–3%) on 
subsequently derived remote sensing reflectance (Rrs) in the visible 
wavelengths. As such, the gain (also termed g-factor; g) for the NIRL 

band on any given sensor is not vicariously calibrated after launch, and 
is assigned a value of 1.0, with the radiance from this band then used 
“as-is” for calculation of atmospheric aerosol contributions to the 
measured total radiance prior to vicarious calibration of all other bands. 
While this overarching assumption may be true when performance is 
evaluated using discrete data points from either simulations or field 
measurements, recent research suggests that operational uncertainties 
resulting from this assumption are not equally distributed in space or 
time (Barnes et al., 2020). 

The focus of this work is the intersection of noted cross-sensor dif
ferences in space and time (e.g., Fig. 1; Djavidnia et al., 2010; Mélin 
et al., 2016) and the sensitivity of Rrs(VIS) to g(NIRL) within individual 
sensor datasets (Barnes et al., 2020). As such, the overall objective of this 
work is to cross-calibrate the NIRL bands of MODIS/A and VIIRS/SNPP 
using their on-orbit measurements over global oceans, specifically 
scaling VIIRS/SNPP to match MODIS/A. Throughout this process, we 
seek to objectively identify characteristics of MODIS / VIIRS pixel pairs 
that are appropriate for such cross-calibration. Following this, we assess 
the impacts of cross-calibrating these NIRL bands on the continuity of 
downstream ocean color products including Rrs and Ca (Hu et al., 2012; 
O’Reilly et al., 2000), with the hypothesis that improving NIRL cross- 
calibration will result in greater continuity of downstream products. A 
fundamental question behind this work is, if MODIS were to replace 
VIIRS on SNPP (or vice versa, if VIIRS were to replace MODIS on the 
Aqua satellite), would they measure identical top-of-atmosphere (TOA) 
radiance over the same ocean pixels? 

2. Methods 

2.1. Cross-calibration approach 

Data from five ocean gyres, representing the “clearest ocean waters” 
(Morel et al., 2010) were used in this study (Fig. 2). Compared to coastal 
waters, gyre targets are desirable for cross-calibration work as they more 
likely (1) include negligible water leaving radiance in the NIR (i.e., 
black-pixel assumption; Gordon and Wang, 1994), (2) are spatially 

Fig. 1. Mean percent difference (MPD) between 
MODIS/A and VIIRS/SNPP for (top to bottom) 
Rrs(443), Rrs(555), Rrs(667), and Ca during the time 
periods of (left) January 2013 and (right) July 2013, 
calculated at 5 degree spatial resolution. Empirical 
band shifts were implemented to calculate Rrs(555) 
from Rrs(547) and Rrs(551) (NASA OBPG, n.d.), as 
well as Rrs(667) from Rrs(671) (Fig. S1). Positive 
values (reds) indicate VIIRS > MODIS. Note that the 
colorbar for Rrs(667) spans twice the range of other 
products, commensurate with the smaller Rrs(667) 
magnitude. Grey indicates no data, with brown 
landmask overlain. (For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the web version of this article.)   
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homogeneous, (3) are overlain by primarily marine aerosols, and (4) are 
less optically complex than coastal waters, reducing uncertainties in 
band shifting. Within these regions, we sought to identify pixels 
collected during simultaneous nadir overpasses (SNOs), as commonly 
used for multi-sensor assessment (Karlsson and Johansson, 2014; Li 
et al., 2015; Pahlevan et al., 2014; Uprety et al., 2013). For the deter
mination of SNO in such analyses, thresholds defining the maximum 
ground distance and time between two nadir measurements are 
required. In the context of a scanning radiometer (e.g., MODIS and 
VIIRS), measurements at nadir are a tiny fraction of all data collected, 
with rigorous cross-sensor analyses requiring consideration of data from 
larger scan angles (Barnes and Hu, 2016). As such, we hereafter use the 
term ‘simultaneous same view’ (SSV) to define instances of collocated 
MODIS and VIIRS pixels which are ‘essentially’ coincident and have 
‘nearly’ identical solar illumination geometry and satellite viewing ge
ometry (collectively called radiant path geometry). As part of these 
analyses, and similar to the objectives of Chen et al. (Chen et al., 2020), 
we strove to define the vague terms ‘essentially’ and ‘nearly’ as used 
above via data-driven sensitivity analyses (see Section 2.3). 

2.2. Optical framework 

Our overall approach to estimate g(V862) used the MODIS/A 869 
and VIIRS/SNPP 862 bands (hereafter termed M869 and V862, respec
tively). For pixels with identical location and geometry (including time), 
and assuming hypothetical sensors with identical bands (e.g., V862 and 
M862), g(V862) simply equals Lt(M862)/Lt(V862). In practice, there is 
no M862, and M869 cannot be used directly in this ratio because of the 
difference in path radiance at 869 nm and 862 nm. Thus, Lt(M’862) must 
be calculated [note, with this nomenclature, M869 and V862 are data 
directly from the specific sensors, while M’862 and V’862 are 
calculated]. 

The specifics of satellite ocean color atmospheric correction have 
been described and refined in numerous other publications over the last 
few decades (Bailey et al., 2010; Gordon and Wang, 1994). Here, we 
provide a brief synopsis of certain portions of that approach, particularly 
as implemented within the NASA ocean color processing software 

package SeaDAS/L2GEN (version 7.5), as necessary background to 
justify the rationale and methodological approach of the current study. 
As such, the basic decomposition of Lt (Franz et al., 2007; Gordon and 
Wang, 1994; Mobley et al., 2016) can be parameterized as: 

Lt =
[
La +Lr + TLg + tLf + tLw

]
*tgsol *tgsen *p*cx (1)  

where La, Lr, Lg, Lf, and Lw are radiance contributions due to atmospheric 
aerosols, Rayleigh scattering, sunglint, white caps/foam, and water, 
respectively; T and t are Rayleigh-aerosol transmittance factors from the 
surface to the sensor (direct and diffuse, respectively); tg is gaseous 
transmittance (from the Sun to the surface, sol, and from the surface to 
the sensor, sen); p is a polarization correction parameter, and cx includes 
all instrument calibration coefficients. Note that this formulation ig
nores the spectral dependences which exist for all parameters. For the 
study areas (ocean gyre centers), the black pixel assumption [Lw(NIR) =
0] should nearly always be valid (Gordon and Clark, 1981), and pixels 
with detected Lw(NIR) (at the precision of the SeaDAS processing soft
ware) were excluded in the current study. Additionally, any pixels with 
substantial Lg or Lf contributions are generally not suitable for vicarious 
calibration studies - in the current study, we excluded any pixels for 
which SeaDAS returned non-zero values for Lg(NIR) or Lf(NIR). For any 
NIR band, this leaves: 

Lt = [La + Lr]*tgsol *tgsen *p*cx (2) 

Within SeaDAS, Lr is obtained from look-up-tables (LUTs, derived 
from radiative transfer simulations) as a function of wind speed 
(determined from National Centers for Environmental Prediction, 
NCEP), radiant path geometry, and sea-level pressure (Bodhaine et al., 
1999; Wang, 2005). Polarization correction factors (p) are derived using 
prelaunch characterization of band-specific polarization sensitivity, 
combined with pixel specific radiant path geometry, Lr, and Lg (Meister 
et al., 2005; Mobley et al., 2016). Instrument calibration coefficients (cx) 
are intended to ensure within-sensor continuity, and thus are a function 
of sensor temperature, scan angle, mirror side, detector, and time (Sun 
et al., 2014). 

Gaseous transmittance factors (tgsol, tgsen) for the VIS and NIR bands 
primarily correct for the absorption due to atmospheric O3, NO2, and 

Fig. 2. Study areas (black boxes) and groundtracks for MODIS (blue) and VIIRS (red) on 16 January 2012 (“day 15” of the repeat orbits). Times (GMT) indicate 
approximate equatorial overpass time, with bracketed times being on the subsequent day (“day 0” of the repeat orbits). North Atlantic Gyre (NAG), North Pacific 
Gyre (NPG), South Pacific Gyre (SPG), South Atlantic Gyre (SAG), and South Indian Gyre (SIG) represent the “clearest ocean gyres” (Morel et al., 2010), as seen in the 
MODIS mission chlor_a composite (background). Land shown as white with black outline. Sample swaths shown for a single MODIS (light blue) and VIIRS (pink) 
overpass. Note all gyres except NPG have SSV on days with this groundtrack configuration. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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H2O, among others. Calculation of the former uses pixel specific radiant 
path geometry, [O3] derived from ancillary sources (e.g., Ozone Moni
toring Instrument, OMI), and band-specific (i.e., bandpass-integrated) 
O3 attenuation coefficients (kO3). For NO2, tgsol and tgsen consider ab
sorption in the upper (>200 m) atmosphere, with [NO2] derived from 
climatological values within current operational OBPG processing. 
NCEP atmospheric precipitable water estimates are used to calculate 
water vapor transmittance via empirically derived band-specific poly
nomial coefficients. As most VIS and NIR ocean color bands are situated 
in spectral regions to avoid major water vapor absorption features, these 
primarily account for out-of-band effects (Gordon, 1995). An alternate 
model (using a different suite of polynomial coefficients) can be used for 
water vapor transmittance calculation in the SWIR (short-wave infrared) 
bands, which span water vapor absorption features (Franz, 2006). Note 
that kNO2and kO3 (as used in calculating tgsol and tgsen) are quite small for 
NIR wavebands as compared to most VIS bands (Bogumil et al., 2003; 
Burkholder and Talukdar, 1994), meaning tgsol and tgsen for the data used 
in this study shows little deviation from 1 (~0.9992). All combined, for 
targets that meet the dark pixel assumption, all unknowns in Eq. (1) 
(except La) are calculated from ancillary or geometry information, and 
are thus not dependent on the satellite-measured radiance. 

Within the currently operational NASA standard atmospheric 
correction, La is calculated on a pixel-by-pixel basis using radiance data 
from ‘short’ and ‘long’ wavebands in the near infrared (NIRS and NIRL, 
respectively, centered at 748 and 869 nm, respectively, for MODIS). 
Within this process, La(NIRS) and La(NIRL) are used along with 80 
aerosol models which represent a range of bimodal aerosol size distri
butions inferred from AERONET [AERosol Observation NETwork] ob
servations (Ahmad et al., 2010). These aerosol models (defined in LUTs) 
include the coefficients to convert between approximations for single- 
and multiple-scattering atmospheres, as well as the spectral shape of 
aerosol path radiance (Gordon and Wang, 1994). For the NIRL and NIRS 
wavebands at targets that meet the black pixel assumption, La is first 
calculated directly from Lt via Eq. (1). From this, for each aerosol model, 
the NIR single-scattering aerosol radiance (Las) is then calculated. The 
average Las(NIRS) / Las(NIRL) ratio (termed ε), determined using all 
candidate models, is then used to select two models which most closely 
bracket ε. These two models, proportional to their relative proximity to 
ε, are used to extrapolate Las(NIR) to Las(VIS), and subsequently to 
convert Las(VIS) to La(VIS). As such, within SeaDAS, La for all bands is a 
function of radiant path geometry, ancillary data, and Lt(NIRS and NIRL), 
and is thus calculated irrespective of the Lt measured for all other bands. 
The exception here is where the black-pixel assumption is not met, 
whereby an iterative approach is utilized to calculate La(NIRS and NIRL) 
(Bailey et al., 2010). This process does incorporate Lt information from 
bands outside the NIR, however, as mentioned above, such pixels are not 
considered in the current study. 

2.3. Data processing 

Due to the differences in path radiance between 869 and 862 nm, our 
approach to cross-calibrate MODIS and VIIRS NIRL bands required band 
shifting. Building on the optical framework detailed in Section 2.2, this 
band shift was performed within SeaDAS. Recall that for the operational 
processing of MODIS data, Lt(M748) and Lt(M869) are used to select an 
atmospheric aerosol model, which establishes a spectral relationship for 
the aerosol path radiance that includes the points La(M748) and 
La(M869). La(862) lies along this curve, and, as is done for all other 
MODIS bands, La(M’862) can be calculated corresponding to the VIIRS 
862 band characteristics. Within the current study, this was enacted 
within SeaDAS by modifying the M859 band characteristics to match 
those of V862, which forced the processing to calculate La(M’862) 
instead of La(M859). 

To accomplish this, all relevant parameters [namely λ, F0, and the 
out-of-band water vapor function coefficients (termed ‘oobwv’ in Sea
DAS)] within the VIIRS sensor information file (msl12_sensor_info.dat in 

the SeaDAS distribution) were copied into the MODIS file at the M859 
position (band #12). Of these, oobwv coefficients are not currently 
characterized in operational VIIRS processing, which is convenient for 
this cross-calibration approach. Note that many other values are 
included in the msl12_sensor_info.dat file, but these have no impact on 
the derived La(M’862) values. One exception is the water absorption 
transmittance function coefficients (seven coefficients, termed a_h20 – 
g_h20 in SeaDAS), which could impact La derivations. However, as this 
method is used only to calculate water vapor transmittance in the SWIR 
wavebands, the M859 and V862 coefficients were already equivalent 
(null) in their respective msl12_sensor_info.dat files. 

Additionally, SeaDAS/L2GEN will return an error on initialization if 
not supplied with files containing Rayleigh LUTs (file prefix ray
leigh_modisa in the SeaDAS distribution), polarization correction co
efficients (p in Eq. (1); prefix polcor_modisa), and cross-calibration 
coefficients (cx in Eq. (1); prefix xcal_modisa) for all band-center 
wavelengths indicated in the msl12_sensor_info.dat file. These co
efficients are not used in derivation of La (except for pixels with Lw(NIR) 
> 0, as were explicitly excluded in this study), thus placeholder pol
cor_modisa, rayleigh_modisa, and xcal_modisa files with the appropriate 
862 nm naming conventions were copied from other band-specific files 
already existing in their respective directories. After these combined 
changes, for every pixel, SeaDAS calculated La(M’862) instead of 
La(M859). Recall that this calculation is independent from the Lt(M859) 
as measured by MODIS. It is also important to reiterate that although 
this modified SeaDAS processing will return values for any requested 
product, only the La product in this false band should be considered 
valid, and only for pixels with null Lw(NIR). The veracity of changing 
SeaDAS processing in this manner can be verified by reproducing La for 
an existing MODIS band (e.g., 678 nm) at the M859 band position. 

Satellite data processing for this work began with acquisition of all 
MODIS/A Level-1A and VIIRS/SNPP Level-1A granules (January 2012 – 
December 2018) intersecting the 5 gyres from NASA OBPG (Fig. 2). 
Using the modified MODIS sensor information file and the placeholder 
LUT files, these data were processed to Level-2 (L2), then mapped to a 
cylindrical equidistant projection at 1 km resolution using Python 
modules pyresample and pyproj, with gyre-specific boundaries of: North 
Atlantic Gyre (NAG; 70 W–45 W, 22 N–27 N), North Pacific Gyre (NPG; 
150E-165E, 10 N–20 N), South Pacific Gyre (SPG; 125E-100E, 
30S–20S), South Atlantic Gyre (SAG; 32 W–25 W, 22.5S–12.5S), and 
South Indian Gyre (SIG; 70E-90E, 30S–21S). During this mapping 
procedure, latitude / longitude grid cells were filled using a nearest 
neighbor approach in a two-stage fashion. First, the L2 scan line center 
nearest to each grid cell was identified, then each grid cell was filled 
with the nearest L2 pixel from that scan line. Products generated in this 
processing included all parameters in Eq. (1), as well as msec, scattering 
angle, and sensor zenith. At L2, we also calculated (and subsequently 
mapped) the coefficient of variation (CV) and max / min ratio (MMR) of 
the 3 × 3 box surrounding each non-flagged pixel. Note that no initial CV 
or MMR thresholds were implemented. At the time of processing 
(May–June 2019), all data and SeaDAS processing routines corre
sponded to NASA reprocessing R2018.0. 

Collocated SSV matchups in this fully processed dataset were then 
identified using the following criteria:  

1) To the precision reported in SeaDAS-derived Level-2 products, 
Lg(M869) = Lf(M869) = Lg(V862) = Lf(V862) = 0  

2) For both sensors, grid cells not identified by L2 flags included in the 
L3 mask (enumerated below)  

3) For both sensors, grid cells not within a 20 × 20 box surrounding any 
pixel identified as CLDICE  

4) Absolute time difference between MODIS and VIIRS measurements 
(|ΔTime|) < 30 min  

5) Senz for both MODIS and VIIRS <30◦

6) Absolute Senz difference between MODIS and VIIRS (|ΔSenz|) < 5◦
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7) Absolute scattering angle difference between MODIS and VIIRS (|Δ 
Scat|) < 5◦

All said, 14 ‘overpasses matches’ (gyre, orbital cycle day, and time 
combinations) showed instances of SSV according to geometry alone 
(items 4–7, above; Fig. 3). Due to slight orbital variations, not every 
overpass match included potential SSV during every instance of the 16- 
day repeating orbital cycles. Beyond sensor geometry, the following L2 
flags (item 2, above) were used to identify pixels which were unsuitable 
for subsequent analyses: ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, 
STRAYLIGHT, CLDICE, COCCOLITH, HISOLZEN, LOWLW, CHLFAIL, 
NAVWARN, ABSAER, MAXAERITER, ATMWARN, and NAVFAIL. These 
flags are those used to mask Level-3 Rrs composites (https://oceancolor. 
gsfc.nasa.gov/atbd/ocl2flags/). A dilation of 20 km was applied for any 
grid cells identified as CLDICE, as memory and adjacency effects for Lt 
were expected to be larger than those for Rrs (item 3, above) (Feng and 
Hu, 2016). 

Fig. 4 shows variability in these geometric data products as 
commonly observed in granule pairs, as well as the impact of various 
data exclusion techniques. From the resulting data, we assessed basic 
summary statistics [particularly median and median absolute deviation 
(MAD)] of the dataset as a whole and after culling the data by individ
ually restricting the threshold criteria numbered 4–7. Additionally, 
these summary statistics were calculated after excluding data that did 
not meet increasingly tightening spatial homogeneity thresholds (MMR 
or CV), as well as thresholds for relative azimuth and sensor azimuth. In 
doing so, we expected that (1) tightening threshold criteria for SSV 
determination would decrease data quantity; while (2) ‘improvement’ to 
the dataset could be identified by progressively lower MAD. In other 
words, we attempted to identify SSV metrics for which tightening the 
threshold preferentially excluded outliers in the dataset. 

2.4. Assessment of geophysical products 

Previous studies (Pahlevan et al., 2017b; Sayer et al., 2017) assessing 
calibration between MODIS/A and VIIRS/SNPP have found differences 

of approximately 3–3.5% for their respective NIRL bands. Assuming g 
(M869) = 1.000 (the current operational default), application of this 
calibration correction to VIIRS would yield g(V862) ≈ 0.965–0.97. 
Using the approach of Franz et al. (Franz et al., 2007) and considering a 
new g(V862) = 0.97 to be the ‘pre-launch’ vicarious gain, we calculated 
SVC gains for all other VIIRS bands in the visible and NIR (Table 1). As 
detailed in Franz et al. (Franz et al., 2007), this process included (1) 
initial assumption of the g(NIRL) value, (2) calculation of g(NIRS) using 
VIIRS data from the South Pacific Gyre (N = 789), and (3) subsequent 
calibration of all other bands against MOBY (Marine Optical Buoy, 
Brown et al., 2007) data (N = 223) propagated to Lt using the aerosol 
radiance model determined using VIIRS Las(NIRL and NIRS). Note that 
these SVC gains were calculated via the same processing code and data 
selection/exclusion criteria used in operational processing. As such, 
repeating this procedure with g(862) = 1.00 exactly replicated the 
extant operational SVC gains for all bands. We subsequently acquired all 
2013 VIIRS/SNPP L1B and GEO files from NASA OBPG and processed 
them to Level-2 using this alternate gain configuration, with the 
resulting dataset being termed VIIRSALT. These files were merged into 
daily Level-3 BIN files. Additionally, all 2013 daily Level-3 MODIS/A 
and VIIRS/SNPP (VIIRSORG) BIN files were acquired from NASA OBPG 
(these use the current default SVC gains, and were used in creation of 
Fig. 1). 

These daily resolution BIN files were mapped to standard mapped 
image (SMI) format at 4 km resolution, whereby the average and pixel 
count within each bin was determined for Rrs(VIS) and chlor_a. Bins (4 
km daily) which included no data in any of the three datasets (MODIS, 
VIIRSORG, and VIIRSALT) were excluded from all further analysis. For 
proper comparison, M547 and V551 were converted to M’555 and 
V’555, respectively, as performed in SeaDAS ((NASA OBPG, n.d.). 
Additionally, V’667 was calculated from V671 using an empirical rela
tionship derived from SeaBASS (Werdell and Bailey, 2005) data. Spe
cifically, all Rrs spectra within the SeaBASS dataset (accessed on 24 
December 2020) which included values at both 667 nm and 671 nm (±1 
nm) were extracted (N = 3183). These data were transformed into log- 
space, and simple linear regression was used to derive the following 
relationship:Rrs(667) = 10(1.0048 log(Rrs(671))+0.0056); with R2 = 0.99 
(Fig. S1). Monthly data were calculated using the daily SMI images via 
weighted averages. To compare VIIRS and MODIS products, we calcu
lated mean percent difference (MPD) as 

MPD = 100*
(

VIIRS − MODIS
)

MODIS,
(3)  

with the overbar representing the mean for any given spatiotemporal bin 
(e.g., monthly 5 degree box, as in Fig. 1). While unbiased percent dif
ference is more typically used in satellite intercomparisons (Barnes 
et al., 2019; Mélin and Franz, 2014), here we consider change against a 
single reference (MODIS). This allows relative cross calibration of 
VIIRSORG and VIIRSALT against MODIS data to be calculated using the 
change in absolute mean percent difference (Δ|MPD|), whereby. 

Δ∣MPD∣ = ∣MPDVIIRS ORG∣ − ∣MPDVIIRS ALT∣ (4) 

Note |MPD| is distinct from the more commonly used MAPD (mean 
absolute percent difference). Negative values in Δ|MPD| indicate tighter 
consistency between MODIS and VIIRSORG, while positive values show 
improvement in cross-sensor consistency using the alternate VIIRS 
gains. 

3. Results 

While SSV were identified in each of the 14 overpass matches 
(Fig. 3), the quantity of SSV data differed greatly by gyre. Only two dates 
contained SSV in the NPG, with total data quantity of 4316 matchups. As 
such, NPG data are often excluded in subsequent analyses and discus
sion. Despite the SAG having only one overpass match, 40 dates of this 

Fig. 3. MODIS and VIIRS groundtracks (blue and red, respectively), swaths 
(semi-transparent light blue and pink, respectively), and SSV (black) for all 
gyre/day/time combinations with potential SSV (termed ‘overpass matches’). 
Scale is identical for all panels. “Day” indicates date number of the repeat 
orbital cycle (starting 1 January 2012). Note that for these locations and 
overpass matches, VIIRS swaths completely overlay MODIS swaths, thus no 
unique MODIS swath data (transparent light blue) are visible. Also, due to 
orbital variability and clouds, SSV pixels are not always present for each 
overpass match (e.g., SSV were only observed on 6 out of 159 instances of SIG, 
15, 08:50). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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overpass match included SSV, with total data quantity of 3.6E5 
matchups. This is similar to the data quantity in SPG (4.6E5), where SSV 
were spread out over 123 dates and between 5 different overpass 
matches. Data quantity was greatest in the NAG (1.4E6 in 237 dates) and 
especially the SIG (5.9E6 in 250 dates), and in the respective (austral or 
boreal) wintertime for each gyre (Fig. 5). 

The median and MAD for the Lt(M’862)/Lt(V862) ratio, calculated 
for each date with SSV pixels, are shown in Fig. 6. Most medians (65%) 
are between 0.90 and 1.05, and most MAD (89%) are <0.05. The spread 
of these medians varies substantially by gyre, with values in SAG and 
especially SPG being more variable than the other two gyres. In the 
aggregate, MAD values are also higher in these two gyres. Not surpris
ingly, dates with fewer SSV matchups generally show more variability in 
the median values and often larger MAD. Gyre-specific median 

Lt(M’862)/Lt(V862), calculated using all matchups within each gyre, 
ranged from 0.95 in SAG to 0.979 in NAG. 

We subsequently sought to refine thresholds used to identify SSV 
matchups, with the expectation that the variability in Lt(M’862)/ 
Lt(V862), quantified as MAD, should be reduced when tightening rele
vant metrics. A graphical representation of this analysis is presented in 
Fig. 7. For all of the initially used geographic criteria (items 4–7 in the 
list in Section 2.3., columns 3–6 in Fig. 7), no widespread decrease in 
MAD was identified with progressively tightening thresholds. For 
example, our initial SSV threshold excluded any pixels with MODIS or 
VIIRS Senz >30◦. If we had, alternately, selected 15◦ as this threshold, 
our data quantity would have been approximately half (including no 
NPG data), gyre-specific MAD would be largely unchanged, and the 
determined gyre-specific gains [the median of Lt(M’862)/Lt(V862)] 

Fig. 4. MODIS and VIIRS data collected on 
19 June 2016 within the SAG under SSV 
conditions. Top row shows (a-b) true color 
RGB composites; (c) difference in time be
tween measurements (in m:s); (d) difference 
in scattering angle (◦); (e) difference in 
sensor zenith (◦) with nadir (dashed lines) 
and 30◦ sensor zenith (dotted lines) for 
MODIS (grey) and VIIRS (black) demar
cated. Bottom row shows Lt(M’862)/ 
Lt(V862). The same data are included in all 
panels, but are masked using progressively 
more restrictive criteria: (f) masking any 
pixels indicated by noted Level-2 processing 
flags; (g) additionally masking pixels 
exceeding SSV thresholds (in this instance, 
only the Senz threshold is exceeded); (h) 
masking pixels within 20 km of CLDICE 
pixels; and (i) masking pixels with high 
spatial heterogeneity in Lt(M’862) or 
Lt(V862). Colorscale for (c)-(e) are to the left 
of the colorbar in the bottom right panel.   

Table 1 
Vicarious gains for VIIRS/SNPP (R2018.0) with g(862) = 1.00 (current default) and 0.97.  

Band (nm) 410 443 486 551 671 745 862 

Original gains 0.9752 0.9579 0.9874 0.9824 0.9918 0.9922 1.0 
Alternate gains 0.9748 0.9558 0.9834 0.9744 0.9764 0.9712 0.97 
Alternate gain σ 0.0135 0.0128 0.0133 0.0010 0.0063 0.0153 –  

Fig. 5. Histograms of SSV matchups (after l2_flags masking and CLDICE dilation) according to (a) overpass matchups (see Fig. 3) and (b) binning by month. Numbers 
above bars indicate the number of overpass matchups with at least one SSV (out of ~159). Note logarithmic scale for y-axes. 
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Fig. 6. Median Lt(M’862)/Lt(V862) (circles) with 1 
median absolute deviation error bars for SSV within 
each overpass match (2011–2018). Data from four 
gyre regions (NPG only had two dates with SSV) are 
shown according to day of year. Color indicates 
number of SSV with each overpass match: <10 (yel
low), 10–99 (orange), 100–999 (red), ≥1000 
(maroon). For each gyre, dotted line shows overall 
median Lt(M’862)/Lt(V862). Annotations on top right 
of each panel show statistics for all SSV within each 
individual gyre. (For interpretation of the references 
to color in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 7. Gyre-specific impacts of tightening SSV criteria on (top row) median absolute deviation of Lt(M’862)/Lt(V862), (middle row) median Lt(M’862)/Lt(V862), 
and (bottom row) SSV data quantity. Columns show (left to right) max/min ratio (less 1 to allow for log plot), coefficient of variation, sensor zenith, absolute 
difference in sensor zenith between SSV pixels, absolute difference in scattering angle, absolute difference in time, absolute difference in relative azimuth, and 
absolute difference in solar azimuth. Within all panels, criteria are least restrictive on the left side, and get progressively tighter moving rightward. Note logarithmic 
x-axis for columns 1, 2, 7, and 8. Vertical bars in 1, 2, 7 and 8 represent thresholds which maximize data quantity and agreement (1.02, 0.007, 90◦, and 90◦, 
respectively). 
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would vary from 0.92 to 0.99. Two additional geometric parameters 
were also assessed, namely the absolute differences in sensor azimuth 
(Sena) and relative azimuth (Relaz) between MODIS and VIIRS (Fig. 7 
columns 7 and 8, respectively). For both, we note generally decreasing 
MAD with tightening thresholds, most prominently in SPG for absolute 
difference thresholds of roughly 195–165◦. NAG data showed similar 
sharp improvement with tightening of |ΔSena| or |ΔRelaz| thresholds 
between 224 and 143◦, while steady degreases in MAD were seen in SPG 
data with |ΔSena| or |ΔRelaz| thresholds tightening from 239 to 0◦ or 
243–5◦, respectively. Tightening the |ΔSena| or |ΔRelaz| thresholds 
below ~5◦, however, was associated with MAD increases in SPG or SAG, 
respectively. In addition, while the threshold assessments shown in 
Fig. 7 primarily are represented via absolute differences (with the 
exception of Senz; column 3), we also tested tightening of the raw (single 
sensor) geometry values, and note a general lack of consistently 
decreasing MAD with tightening criteria. 

In contrast to these temporal and radiant path geometry metrics, 
tightening the metrics of spatial homogeneity was a consistently effec
tive method by which to reduce the variability in the datasets. For both 
MMR and CV, as the metric was tightened, MAD showed steep declines 
within all gyres (especially SPG and SAG). At MMR and CV thresholds of 
1.02 and 0.007, respectively, data quantities are approximately half that 
of the full dataset, while MAD for all gyres is ~0.01 and gyre-specific 
median ranges from ~0.96 to 0.975. 

From these results, we excluded data for which (1) MMR > 1.02 or 
(2) |ΔRelaz| > 90◦. We then recalculated the date-specific MAD and 
median (Fig. 8; Fig. S2 also shows these results separated by year and 
season). The spread of median values among the individual dates with 
SSV was noticeably reduced, as were the MAD values about those me
dians. In contrast to the full dataset (Fig. 6), the SPG medians of this 
refined dataset are not substantially more variable than the other gyres. 
Data quantity appears to influence the spread of these data in two ways. 
First, medians on dates with fewer SSV regularly show large deviations 
from the overall gyre-specific medians, similar to that seen for the full 
dataset. Additionally, time periods with fewer SSV (e.g., March – July in 

the NAG) tend to show increased variability in the date-specific me
dians. Median Lt(M’862)/Lt(V862) within individual gyres varied from 
0.964 to 0.974, with the overall cross-gyre median being 0.971 ±
0.0088. 

4. Discussion 

Our analysis of all matchups which met the initial criteria for SSV 
showed general agreement between the gyres as to the median 
Lt(M’862)/Lt(V862) (0.95–0.98), with more substantial variability in 
MAD (Fig. 6). Of all the parameters tested, tightening of the spatial 
homogeneity metrics (CV and MMR) showed the most prominent im
pacts on MAD, with all gyres showing steady decreases with more 
stringent heterogeneity thresholds (Fig. 7). From this, we determined 
that an MMR threshold of 1.02 or a CV threshold of 0.007 were equally 
acceptable. To a lesser extent, tightening |ΔRelaz| and |ΔSena| also 
showed utility in culling data, particularly in SPG. This improvement 
reversed for certain gyres below a threshold of ~5◦, coincident with the 
greatest quantity of data. As such, we instituted a conservative |ΔRelaz| 
threshold of 90◦, but recognized almost negligible differences in results 
if this threshold were placed anywhere between 10◦ and 140◦. The 90◦

threshold takes advantage of the initial obvious MAD improvements, 
especially in SPG (Fig. 7), without requiring a more subjective deter
mination of a lower boundary. 

It is important to note that our operationalization of ‘improvement’ 
in data spread only included decreases in MAD – not inter-gyre differ
ences in MAD or median Lt(M’862)/Lt(V862) values. Nevertheless, gyre 
specific values for both the MAD and median Lt(M’862)/Lt(V862) also 
converged with tightening spatial homogeneity and |ΔRelaz| criteria. 
This cross-gyre agreement reinforces our confidence in both the meth
odology and the resultant findings. 

Most of the geometry thresholds showed no consistent utility in 
culling outliers from these data (Fig. 7). Indeed, many gyres showed 
increases in MAD with tightening geometry thresholds. This is some
what unexpected, as pixels with identical viewing geometry should, 

Fig. 8. Same as Fig. 6, but only showing data with MMR < 1.02 and |ΔRelaz| < 90◦.  
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theoretically, have smaller differences in path radiance than those with 
divergent viewing geometry (since these matchups are collocated, Lw 
should be identical). Noting the strong impact of the spatial homoge
neity metrics, we subsequently assessed impacts of tightening geometry 
thresholds on data which had already been culled by the spatial ho
mogeneity thresholds (with and without the |ΔRelaz| threshold), but 
again found no consistent impacts. Similarly, we also graphically 
assessed 2D–4D impacts of tightening thresholds, attempting to identify 
combinations of tightening geometry thresholds which improved MAD 
for all gyres (for example, if MAD improvements were seen with tight
ening ΔSenz only for pixels with Senz <10◦ and ΔScat <5◦). Again, 
however, no widespread positive impacts of tightening geometry 
thresholds were observed. Apart from the |ΔRelaz| and |ΔSena| analyses 
already mentioned, the one exception within all of this discussion was 
for the Senz threshold. As seen in Fig. 7, column 3, and numerous other 
visualizations of data subsets, MAD typically increased or stayed stable 
as the Senz threshold was tightened from 30◦ to 5◦, but striking de
creases in MAD were observed as this threshold was further tightened 
below 5◦. The data quantity with such a stringent Senz threshold was 
quite low, and the improvements in MAD often did not counter the MAD 
increases observed with the initial threshold tightening from 30◦ – 5◦. 

Having said that, these analyses likely indicate that the initial ge
ometry thresholds are sufficient, if not potentially too stringent, for 
satellite cross-calibration over ocean targets, but should be accompanied 
by a |ΔRelaz| (or |ΔSena|) threshold of ~90◦. The necessity of this 
threshold is understandable in a geometric context – large differences in 
Relaz or Sena between sensors indicates viewing a target from opposite 
directions (e.g., MODIS viewing a pixel from the East, with VIIRS 
viewing from the West; for example, overpass match SPG, 7, 21:15 in 
Fig. 3; (Pahlevan et al., 2016). Note that this condition was common for 
SPG and, to a lesser extent, SAG and NAG (Fig. 3), which were the only 
gyres where |ΔRelaz| and |ΔSena| thresholds had substantial impacts 
(Fig. 7). Additionally, while the spatial heterogeneity metrics showed 
utility in culling outliers for all gyres, gyre-specific differences in said 
utility can be understood in the context of Lt magnitude. For the full 
dataset, median Lt in SAG (2.1 W m− 2 sr− 1 for MODIS) and especially 
SPG (1.8 W m− 2 sr− 1 for MODIS) was substantially lower than for the 
other gyres (medians of 2.4–3.0 W m− 2 sr− 1 for MODIS). Assuming 
relatively consistent Lt noise between gyres, lower Lt magnitude would 
mathematically lead to a more variable Lt/Lt ratio, thus the higher MAD 
in SAG and SPG for the full SSV dataset (Fig. 7). The MMR and CV 
metrics, both of which are implicitly scaled to the magnitude of the 
original dataset, should thus have greater impacts in SAG and SPG, as 
was observed. As SPG data are solely used in SVC of NIRS band, it is 
critical that spatial heterogeneity metrics continue to be implemented 
within operational SVC processes (Franz et al., 2007). 

These results complement those of Chen et al. (Chen et al., 2020), 
who established cross-sensor geometry thresholds towards cross- 
calibration of VIIRS and MERSI-II (Medium Resolution Spectral 
Imager II onboard Fengyun-3D). Within that work, the SeaDAS LUTs 
were used to simulate Lt(VIS) for the full suite of potential satellite 
radiant path geometry conditions, from which percent relative differ
ences in Lt(VIS) between geometry conditions were calculated. The ge
ometry threshold results presented in the current study fit within those 
of Chen et al. (Chen et al., 2020), but also highlight that generic 
thresholds based on the suite of all possible geometries may not be 
acutely suited for SSV optimization within a specific dataset. For 
example, Chen et al. (Chen et al., 2020) specify an interplay between the 
solar zenith maximum threshold and the ΔSolz threshold, noting that a 
lower-than-desired Solz threshold (50◦) was selected so that the ΔSolz 
threshold would not have to be too small (they eventually settled on 
2.9◦). Although some of our SSV data lie outside those thresholds, all 
appear to be within geometries which would be deemed ‘acceptable’ 
according to the basis for Chen et al. (Chen et al., 2020) threshold de
terminations (i.e., ±2.5% relative difference; compare the SSV histo
grams in Fig. S3c to relative difference representations in Fig. 5 of Chen 

et al. (Chen et al., 2020)). As such, the data-driven approach described in 
this paper may be considered a more flexible approach to derive tailored 
thresholds for data culling, which may be especially relevant for satellite 
intercomparisons with limited data quantity, such as Landsat-class 
missions (Pahlevan et al., 2017b). 

From the cross-calibration results between M869 and V862, we find 
a difference of approximately 3%. Pahlevan et al., (Pahlevan et al., 
2017b) performed cross-calibration of the NIRL bands between Landsat- 
8 OLI and both MODIS and VIIRS, finding minimal differences between 
OLI 865 and MODIS 869. However, VIIRS Lt(862) were roughly 3.5% 
higher than OLI 865, which they postulated could indicate a mismatch 
between MODIS and VIIRS. Additionally, Sayer et al., (Sayer et al., 
2017) performed a more direct comparison of MODIS and VIIRS SNO 
using ‘dark water’ pixels, and calculated g(V862) = 0.963 (±0.004). 
Both of these studies used varying approaches, which also differ from 
the current study, for (1) atmospheric correction, (2) band shifting, and 
(3) identification of SNO pixels acceptable for inclusion in analyses. 
While the difference between the MODIS and VIIRS NIRL bands (as 
calculated in the current study) is slightly less than that as calculated in 
either Pahlevan et al., (Pahlevan et al., 2017b) or Sayer et al., (Sayer 
et al., 2017), it is within listed error ranges. We also note that 2018 was 
an anomalously high year in our dataset, and that the instrument cali
bration for the MODIS dataset used in the current study (R2018.0) has 
recently been modified to account for calibration errors after March 
2018 (https://oceancolor.gsfc.nasa.gov/reprocessing/). Excluding 2018 
data, median Lt(M’862)/Lt(V862) was 0.969 ± 0.0078 (Fig. S2). Our 
findings, together with these previous studies, indicate robustness of the 
calculation of a ~ 3–3.5% difference between MODIS and VIIRS NIRL 
bands. In the context of vicarious calibration of satellite ocean color 
data, this ~0.5% spread in g(NIRL) will likely have minor impacts on Rrs 
retrievals in the visible bands (Barnes et al., 2020; Wang and Gordon, 
2002). 

As such, we calculated an alternate suite of gains for VIIRS/SNPP via 
the Franz et al. (Franz et al., 2007) approach, except using g(862) = 0.97 
(Table 1). Using this gain suite, we re-processed all L2 files collected by 
VIIRS in 2013 and calculated MPD against MODIS/A data (Eq. (3)). 
Additionally, using the Δ|MPD| parameter (Eq. (4), Fig. 9), we identified 
any improvements or declines in cross-sensor continuity resulting from 
using this alternate VIIRS dataset, as opposed to that calculated using 
the default VIIRS calibration (Fig. 1). As such, Fig. 9 shows substantial 
variability in Δ|MPD| by data product and season. Specifically, Rrs(443) 
shows general 0–2% improvement in most seasons, but 2–4% declines in 
regions with exceptionally high solar zenith (i.e., Artic region in 
January, Antarctic in July). Variability in Δ|MPD| was also observed 
according to both geographic and seasonal comparisons of Rrs in the 555′

and 667/667′ bands. Specifically, general improvements were noted 
with higher zenith angles, as well as in the equatorial regions (restricted 
to equatorial Atlantic and Indian regions for 555′). Improvement was 
more widespread in for the red bands. Ca shows moderate improvement 
in equatorial and tropical regions using the alternate VIIRS gains, but 
substantial widespread decreases in higher latitudes. Several global re
gions show reduced cross-sensor agreement in Ca despite improvement 
(or no change) in cross-sensor agreement of the precursor Rrs bands 
shown. For waters with Ca > 0.20, chlor_a retrievals depend on the 
maximal value between Rrs(443) and Rrs(M488 or V490), thus these 
discrepancies may result from switching of the ‘blue’ band in Ca calcu
lation (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). 

Combining Figs. 1 and 9, the changes in MODIS/VIIRS MPD resulting 
from the use of VIIRSALT can be used to visualize the primary direction of 
change in the original geophysical products. For instance, Rrs(443) 
MODIS/VIIRSORG MPD is highly positive (MODIS 10% or more higher 
than VIIRS) for the regions with extremely high solar zenith angle, but 
slightly negative in most other regions (Fig. 1). As noted above, Δ|MPD| 
for this band is negative in these high solar zenith locations, but positive 
most everywhere else (Fig. 9). In short, where VIIRSORG > MODIS, 
VIIRSALT > > MODIS, and where VIIRSORG < MODIS, VIIRSALT ≥
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MODIS. Thus, for Rrs(443), VIIRSALT is generally greater than VIIRSORG. 
This relationship is more variable for the other Rrs bands, as differences 
in trend emerge between equatorial and high solar zenith regions. 
Specifically, for these bands, VIIRSALT < VIIRSORG in the equatorial re
gions, but VIIRSALT > VIIRSORG in the higher latitudes. For most of the 
globe, VIIRSALT Ca < VIIRSORG Ca. 

Overall, we note general improvement in MODIS/VIIRS continuity 
resulting from the use of VIIRSALT, but highlight that these changes (1) 
are not manifested for all products or all locations, and (2) do not come 
close to negating the bias between MODIS and VIIRS. The latter is 
exemplified by the colorscale differences between Figs. 1 and 9, and is 
contrary to our overarching hypothesis that cross-calibrating the NIRL 
bands should result in widespread continuity improvements in down
stream products. Moreover, noting that Fig. 1 looks almost identical to 
Fig. S4 (which shows the MPD for the MODIS/VIIRSALT comparison), it 
is clear that other sources of uncertainty must be contributing to the 
discrepancies between MODIS and VIIRS. As the cross-sensor continuity 
appears to be tied to radiant path geometry, the aerosol models [which 
include a radiant path geometry component – (Ibrahim et al., 2019)], 
would be an attractive avenue for assessment. Additionally, while both 
La(NIRL) and ε are used in aerosol model selection, only the former is 
substantially changed for a dataset processed with a different g(NIRL) 
after SVC. Thus the act of changing g(V862) for these analyses may 
change the derived La spectral magnitude, with downstream impacts on 
Rrs (see Figs. 9 & 10 in Pahlevan et al., 2017a) and Ca. Multiple addi
tional factors are modulated by radiant path geometry, including po
larization (Meister et al., 2005; Mobley et al., 2016), Bidirectional 
Reflectance Distribution Function (Morel and Gentili, 1996, 1991), and 
instrument calibration corrections for scan angle and time (Sun et al., 
2014), and stray light (Barnes et al., 1995). Errors in characterizations 
and correction of one or multiple of these may thus contribute to 
remaining cross-sensor biases as noted here. 

Despite the directionality implied by setting g(V862) = 0.97 in the 

above analyses, the 3% difference between M’862 and V862 does not 
actually indicate which of the MODIS or VIIRS g(NIRL) pre-launch 
characterizations is more correct. We chose to modify g(V862) as this 
mimics the format of similar cross calibration exercises (i.e., scaling 
VIIRS to match MODIS, see Pahlevan et al., 2017b; Sayer et al., 2017). 
Additionally, as MODIS/A and OLI/Landsat8 appear to be well cross- 
calibrated with g(NIRL) = 1.0, biases between MODIS/A and VIIRS 
may reflect errors in the VIIRS calibration (Pahlevan et al., 2017b). 
Nevertheless, an equally likely potentiality would be g(V862) = 1.00 
and g(M869) = 1.03. Alternatively, as Barnes et al. (Barnes et al., 2020) 
found an optimal g(M869) ≈ 1.025, the corresponding g(V862) would be 
~0.99–0.995. In this work, we opted to modify gains for only one sensor 
to allow for simplicity of comparison, and expect that similar trends in 
cross-sensor continuity would result from any of the other combinations 
of gains listed above. Nevertheless, these types of studies show potential 
for improving cross-calibration of standard ocean color products, and 
therefore should be adopted for operational processing of ocean color 
data to create more consistent multi-mission products in the past and 
into the future. Such activites should complement intercalibration 
against high-quality Lt measurements as derived from planned satellite 
missions such as CLARREO (Climate Absolute Radiance and Refractivity 
Observatory) Pathfinder (Goldin et al., 2019). 

5. Conclusions 

In this work, we assessed the cross-sensor consistency of the NIRL 
bands of two mainstream sensors (MODIS/Aqua and VIIRS/SNPP) while 
weighing techniques commonly used to identify pixel matchups appro
priate for satellite cross-calibration. In doing so, we note metrics for 
spatial homogeneity and relative azimuth are pivotal towards isolating 
high-quality simultaneous same view (SSV) matchups. Additionally, we 
found a ~ 3% difference in the pre-launch calibration of the NIRL bands 
of the two sensors, with MODIS/A being lower. According to Barnes 

Fig. 9. Impacts of modified VIIRS gains on agree
ment between MODIS and VIIRS for various ocean 
color products, displayed as the change in absolute 
percent difference (Δ|MPD|) between MODIS and 
VIIRS after transitioning from VIIRSORG to VIIRSALT. 
Data shown for (top to bottom) Rrs(443), Rrs(555), 
Rrs(667), and Ca during the time periods of (left) 
January 2013 and (right) July 2013 at 5 degree 
spatial resolution. Positive values (reds) indicate im
provements in the consistency of VIIRSALT and 
MODIS as compared to VIIRSORG and MODIS. Grey 
indicates no data, with brown landmask overlain. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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et al. (Barnes et al., 2020), a change of that magnitude within a single 
sensor can have substantial impacts on derived ocean color trends in 
ocean gyres. While global data reprocessed with updated gains to 
maximize NIRL cross-calibration consistency showed general improve
ment in the derived reflectance products, more work is still needed to 
remediate remaining biases between ocean color sensors. 
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