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Algorithm	
  Background

• Developed	
  using	
  in	
  situ	
  hyperspectral	
  measurements

• Empirical	
  orthogonal	
  funcFon	
  (EOF)	
  analysis	
  idenFfies	
  
independent	
  (orthogonal)	
  modes	
  of	
  variance

• EOF	
  scores	
  of	
  the	
  modes	
  that	
  explain	
  ~98%	
  variance	
  were	
  used	
  as	
  
independent	
  variables	
  in	
  models	
  of	
  IOPs

Normalised AOP(λ)
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loadings with one loading for each wavelength. Additionally, a vector
of scores associated with each EOF was obtained, which represented
the amplitude of the EOF for each observed Rrs(λ) spectrum.

The EOF analysis of Rrs(λ) spectra showed that the first mode
contained 92.4% of the variance (Fig. 4, top panel), and its shape
closely resembled the mean shape of Rrs(λ) (Fig. 3) indicating that

the variance captured was due to variability in spectral amplitude.
The second mode (Fig. 4, second panel), however, exhibited a shape
not related to spectral amplitude, but rather to an out of phase (i.e.
negatively correlated) behaviour between the blue and red regions
of the spectrum, suggesting a process (or processes) that affects the
short and long wavelength regions of the spectra differently.

In order to focus on changes in spectral shape that are expected
from to result from variability in phytoplankton optical properties,
it was decided to normalise Rrs(λ) to minimise the amplitude
component of spectral variability and permit a more informative
analysis of the factors that drive variability in shape. Rrs(λ) spectra
were normalised by their integral according to:

Rrs λð Þ ¼ Rrs λð Þ
∫700
400Rrs λð Þdλ

ð2Þ

where 〈Rrs(λ)〉 is integral-normalised Rrs(λ) (dimensionless). As can
be seen in Fig. 5, the normalisation procedure substantially reduced
the variability in spectral amplitude from, for example, a factor of
8 to 1.3 at 550 nm. The variability in spectral shape is thus much
easier to discern in Fig. 5 than it is in Fig. 3.

The EOF analysis was then repeated on the normalised spectra and
the first mode (Fig. 6, top panel), which described changes in spectral
shape, was found to be almost identical to the second mode of the
un-normalised spectra (Fig. 4, second panel). Normalisation of the
spectra meant that variability associated with changes in spectral
shape accounted for a much greater proportion of the variance—72.4%
for normalised spectra (Fig. 6, top panel) as compared with 5.1% for
un-normalised spectra (Fig. 4, second panel)—and thereby provided a
more sensitive means to detect variability in AOP spectral shapes
brought about by changes in water constituents. It is important to
note that normalising the spectra made little change to the cumulative
proportion of variance that the first four modes represented—99.6%
for un-normalised spectra (Fig. 4) and 98.3% for normalised spectra
(Fig. 6).

The modes of oscillation in Fig. 6 are interpretable as signatures of
changes in the optical properties of the constituents of the water
column. Mode 1 represents variation in the water's colour, and is likely
the signature of bulk oscillations in biomass concentration. Mode 2
superficially resembles the oscillation in the amplitude of 〈Rrs(λ)〉, but
it does not exhibit the chlorophyll a fluorescence emission peak at
~683 nm captured by mode 1, suggesting that it is not associated with
Chl a. Furthermore, it exhibits an almost exponential shape from 400
to ~555 nm that resembles what might result from light absorbed by
CDOM. This mode may therefore be the signature of changes in the

Fig. 3. Remote sensing reflectance, Rrs(λ), derived from HyperPro measurements
obtained during the period February 2009–March 2010 at the Compass Buoy station.

Fig. 4. Loadings, percent variance and cumulative proportion of variance represented
for modes 1–4 of EOF analysis of Rrs(λ). Fig. 5. Integral-normalised Rrs(λ), 〈Rrs(λ)〉.
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andwhere yi is the ith observation and ŷi the i
thmodelled value. The units

of both these quantities are in decades of log10 space and not easily
translated into absolute terms. Therefore, following Campbell et al.
(2002) and Friedrichs et al. (2009) we calculated a dimensionless inverse
transformed value for bias from:

Fmed ¼ 10bias ð7Þ

where Fmed is themedian value of the ratio ŷ i
yi
. So, for example, if Fmed is 1,

there is no model bias; if Fmed is 2, the model overestimates by a factor of
2; if Fmed is 0.5, the model underestimates by a factor of 2.

Fig. 7 shows a plot of measured Chl a versus Chl aRrs. An R2 value of
0.839 (N=42) and RMSE=0.172 was obtained, and the data showed
a strong linear relationship with a bias of almost zero
(−2.908×10−16, Fig. 7, Table 4).

Comparisons of measured aph(λ) with modelled aphRrs(λ) derived
from Eq. (4) at selected wavelengths showed that aphRrs(λ) was tightly
clustered around the 1:1 line, with the exception of a small number
of data points where aphRrs(λ) was obviously overestimated (Fig. 8).
To assess the model's success over all wavelengths, we calculated
spectrally resolved R2 and RMSE (Fig. 9, Table 5). Much of the variabil-
ity was explained: R2(λ) (N=42; Fig. 9(a)) was found to vary
between 0.771 at 547 nm to 0.910 at 655 nm. Interestingly, the
peaks exhibited in the R2(λ) spectrum at ~420 nm and 655 nm did
not correspond exactly to the positions of peak phytoplankton
absorption, which were centred at approximately 440 nm and
675 nm (Fig. 1). A small trough was observed at ~683 nm, perhaps
due to the fact that chlorophyll fluorescence emission peaks in this
region and adds, rather than removes, photons to the system with
variable fluorescence efficiencies (Huot et al., 2007). It is possible
that some of this fluorescence yield variability may not have been
captured by the first four EOFs.

RMSE (Fig. 9(b)) was an approximate mirror image of R2(λ), and
ranged from 0.083 at 418 nm to 0.130 at 520 nm. At~683 nm a local
maximum was observed that corresponded to the minimum
observed in the R2(λ) spectra at the same wavelength and thought
to be associated with chlorophyll a fluorescence.

The fact that the models accurately estimated both Chl a and
aph(λ) in optically complex waters is very encouraging and indicates
that in our dataset, spectral shape, rather than magnitude, contains
much of the necessary information required to build accurate
models. This ability to capture variability in Rrs(λ) spectral shape
brought about by changes in phytoplankton absorption is a feature
that could ultimately be exploited for tracking changes in phyto-
plankton community composition (c.f. Ciotti and Bricaud (2006),
Hirata et al. (2008)).

An interesting additional result of our analysis was that using
integral-normalised Lu(λ) spectra (〈Lu(λ)〉; dimensionless) in place
of 〈Rrs(λ)〉 spectra produced results very similar to those reported
above. For example, modelling Chl a and aph(443) using 〈Lu(λ)〉
resulted in R2 values of 0.848 and 0.899 respectively. The idea
behind normalisation by Es(λ) when calculating Rrs(λ) is to account
for changes in ambient irradiance. Normalising Lu(λ) spectra as in
Eq. (2) apparently satisfies this purpose, and, significantly, negates
the need for an expensive Es(λ) sensor. This result emphasized the
key idea of our AOP-EOF model—that it is the colour of the water
quantified by spectral shape, and not spectral amplitude, that caries
most of the information about Chl a and aph(λ).

Fig. 7. Measured versus modelled Chl a from AOP-EOF model.

Table 4
Statistics for the hyperspectral and synthetic MERIS AOP-EOF Chl a models.

R2 bias Fmed RMSE

Chl aRrs 0.839 −2.908×10−16 1.000 0.172
Chl aRrsSMERIS

0.831 −2.260×10−16 1.000 0.176

N=42 for both models. Units are log 10[mg m-3]. Fmed is dimensionless.

Fig. 8. Measured versus modelled phytoplankton absorption, aphRrs(λ), at selected
wavelengths.

Fig. 9. Spectrally resolved statistics for aphRrs(λ). (a) R2(λ), (b) RMSE(λ), (N=42).
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andwhere yi is the ith observation and ŷi the i
thmodelled value. The units
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models were used to accurately derive absorption, backscattering (Craig et al. 2012a & in prep.) 
and ultraviolet diffuse attenuation coefficients (Barnes et al. 2014) from MODIS Aqua data 
measured in optically complex coastal waters that typically pose difficulties for conventional 
ocean color algorithms. 

In all of these studies, it was clearly stated that the EOF approach was intended to produce 
local models in scenarios where accurate derivation of IOPs was challenging using conventional 
approaches. The models must be trained using appropriate data that accounts for as much variance 
as possible, but ultimately, they provided accurate estimates of IOPs in optically complex waters 
that represent regions of highly significant ecological or biogeochemical processes. 
 

  
The approach is computationally inexpensive and generic, i.e. it can be implemented in any 
scenario in which reflectance spectra and corresponding in situ training data are available. 
Additionally, as more data become available, they can be added to the matrix of existing data, 
allowing the model to improve or ‘evolve’ in a way analogous to a state space model. 

 

2. Proposed Research 

2.1 Objectives 
 
The objective of this project is to develop an approach to derive accurate estimates of inherent 
optical properties (IOPs) from top of atmosphere (TOA) satellite radiance, thereby bypassing 
standard atmospheric correction requirements. This is of particular relevance to coastal and 
inland water bodies where retrieval of robust ocean color products is notoriously challenging, and 
is frequently hampered by difficulties in achieving accurate atmospheric correction. The 
approach may be used for all waters, but most importantly, offers a means to accurately 
estimate IOPs from ocean color in scenarios where it may otherwise not be possible. 
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Fig. 3. Examples of EOF models derived 
from hyperspectral Rrs in Big Bend, FL 
(Craig et al. 2012a, Craig et al. in prep). 
Results for (a) Absorption by 
phytoplankton 443 nm, aph(443). (b) 
Absorption by CDOM + detritus 
combined at 443 nm, acdm(443). (c) Total 
absorption at 488 nm, atot(488). (d) 
Particulate backscattering at 700 nm, 
bbp(700). Fmed is a metric of model bias. 
If Fmed is 1, there is no model bias; if Fmed 
is 2, the model overestimates by a factor 
of 2; if Fmed is 0.5, the model 
underestimates by a factor of 2. 

Bedford	
  Basin,	
  Canada Big	
  Bend,	
  FL

• Region-­‐specific,	
  in	
  situ	
  hyperspectral	
  models	
  applied	
  to	
  waters	
  where	
  
standard	
  approaches	
  perform	
  poorly

• Models	
  showed	
  excellent	
  performance
• Satellite-­‐derived	
  models	
  show	
  comparable	
  performance

Craig	
  et	
  al.	
  (2012);	
  Craig,	
  Cannizzaro,	
  Hu	
  et	
  al.	
  (in	
  prep)

Absorp.on	
  is	
  heavily	
  dominated	
  by	
  
CDOM	
  at	
  both	
  study	
  sites
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EOF	
  Algorithm	
  for	
  Top	
  of	
  Atmosphere	
  Measurements

• Models	
  accurately	
  esFmate	
  IOPs	
  with	
  
staFsFcs	
  comparable	
  to	
  GIOP

• Cross	
  validaFon	
  confirms	
  models	
  are	
  robust	
  
&	
  not	
  overtrained

• Rayleigh-­‐corrected	
  reflectance	
  models	
  
perform	
  similarly	
  to	
  EOF	
  Rrs	
  models	
  (not	
  shown)

• EOF	
  ρt	
  models	
  also	
  perform	
  similarly	
  (e.g.r2	
  
reduced	
  by	
  few	
  %)
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• Encouraging	
  similar	
  results	
  found	
  for	
  a	
  small	
  MERIS	
  dataset	
  where	
  
atmospheric	
  correcFon	
  is	
  typically	
  extremely	
  challenging	
  (not	
  shown)
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3.2 Model Development and Assessment Using HICO and CASI Datasets 
 
There are currently several HICO targets identified in optically complex areas where regular in situ 
validation data is collected, and include Bedford Basin, Canada, Chesapeake Bay, Monterey Bay, 
CA, Southern California Bight and Eastsound, WA. Model training data availability will be 
dependent on HICO targeting schedules and overpass conditions, and this dataset will be 
assembled on an opportunistic basis. Dr. Craig collaborates closely with scientists at the Bedford 
Institute of Oceanography who perform comprehensive weekly water sampling activities at the 
Bedford Basin target, the schedule of which can be easily modified to accommodate HICO 
overpasses. The possibility of collecting a HICO data set over the Bedford Basin and Scotian Shelf 
region represents an excellent opportunity to integrate hyperspectral satellite ocean color 
measurements with sentinel ecological and oceanographic studies that have taken place at these 
sites for nearly 20 years (Li and Harrison 2008; Therriault et al. 1998). 
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Fig. 7. Schematic showing the conceptual steps involved in generating a synthetic TOA Lt 
dataset. λ, lat, θ, U and OAC in the Hydolight Lw parentheses represent wavelength, 
latitude, solar zenith angle, wind speed used to describe the wind blown surface ocean 
condition, and optically active water constituents respectively. atmos, O3, AOD in the 
MODTRAN Lpath, t, T parentheses represent atmospheric aerosol model, ozone and 
aerosol optical thickness respectively. These dependencies have been omitted for brevity 
in the sketches showing LUT extraction, model development and testing. 

2.Model	
  development	
  and	
  assessment	
  using	
  HICO	
  &	
  CASI	
  datasets

3.Pseudo-­‐simula.on	
  of	
  a	
  hyperspectral	
  NOMAD	
  dataset
➡ This	
  may	
  now	
  be	
  unnecessary	
  if	
  Jeremy	
  Werdell	
  is	
  producing	
  
a	
  ‘real’	
  hyperspectral	
  NOMAD

• TOA	
  radiances	
  generated	
  using	
  
Hydrolight-­‐MODTRAN	
  coupler	
  (Pahlevan	
  
et	
  al.	
  2014)	
  ➙	
  mulF-­‐dimensional	
  LUT

• LUT	
  provides	
  the	
  means	
  to:
-­‐ conduct	
  sensiFvity	
  analyses
-­‐ characterise	
  best	
  ways	
  to	
  train	
  &	
  
implement	
  the	
  model:	
  global,	
  water	
  
type,	
  spectral	
  shape,	
  regional???
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Summary
• A	
  straighdorward,	
  computaFonally	
  inexpensive	
  approach	
  to	
  derive	
  
accurate	
  models	
  for	
  IOPs	
  from	
  top	
  of	
  atmosphere	
  satellite	
  products	
  has	
  
been	
  developed

• Offers	
  a	
  means	
  to	
  derive	
  ocean	
  colour	
  products	
  in	
  scenarios	
  where	
  it	
  
may	
  otherwise	
  not	
  be	
  possible	
  -­‐	
  water	
  opFcal	
  complexity,	
  challenges	
  in	
  
achieving	
  atmospheric	
  correcFon	
  (coastal	
  &	
  inland	
  water	
  bodies)

Fit	
  with	
  PACE	
  IOP	
  ST	
  and	
  Team	
  as	
  a	
  Whole
• The	
  approach	
  is	
  likely	
  to	
  be	
  most	
  valuable	
  in	
  opFcally	
  complex	
  waters,	
  
e.g.	
  coasts,	
  inland.	
  The	
  PACE	
  SDT	
  idenFfied	
  several	
  coastal	
  science	
  
quesFons.

• Consult	
  IOP	
  colleagues	
  to	
  idenFfy	
  where	
  the	
  EOF	
  approach	
  may	
  be	
  most	
  
useful	
  ➙	
  quanFtaFvely	
  compare	
  its	
  performance	
  with	
  other	
  IOP	
  
algorithms	
  -­‐	
  uncertainFes

• Welcome	
  input	
  and	
  suggesFons	
  from	
  AC	
  subgroup	
  on	
  how	
  best	
  to	
  
simulate	
  ‘challenging’	
  atmospheric	
  scenarios


