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Algorithm	  Background

• Developed	  using	  in	  situ	  hyperspectral	  measurements

• Empirical	  orthogonal	  funcFon	  (EOF)	  analysis	  idenFfies	  
independent	  (orthogonal)	  modes	  of	  variance

• EOF	  scores	  of	  the	  modes	  that	  explain	  ~98%	  variance	  were	  used	  as	  
independent	  variables	  in	  models	  of	  IOPs

Normalised AOP(λ)
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loadings with one loading for each wavelength. Additionally, a vector
of scores associated with each EOF was obtained, which represented
the amplitude of the EOF for each observed Rrs(λ) spectrum.

The EOF analysis of Rrs(λ) spectra showed that the first mode
contained 92.4% of the variance (Fig. 4, top panel), and its shape
closely resembled the mean shape of Rrs(λ) (Fig. 3) indicating that

the variance captured was due to variability in spectral amplitude.
The second mode (Fig. 4, second panel), however, exhibited a shape
not related to spectral amplitude, but rather to an out of phase (i.e.
negatively correlated) behaviour between the blue and red regions
of the spectrum, suggesting a process (or processes) that affects the
short and long wavelength regions of the spectra differently.

In order to focus on changes in spectral shape that are expected
from to result from variability in phytoplankton optical properties,
it was decided to normalise Rrs(λ) to minimise the amplitude
component of spectral variability and permit a more informative
analysis of the factors that drive variability in shape. Rrs(λ) spectra
were normalised by their integral according to:

Rrs λð Þ ¼ Rrs λð Þ
∫700
400Rrs λð Þdλ

ð2Þ

where 〈Rrs(λ)〉 is integral-normalised Rrs(λ) (dimensionless). As can
be seen in Fig. 5, the normalisation procedure substantially reduced
the variability in spectral amplitude from, for example, a factor of
8 to 1.3 at 550 nm. The variability in spectral shape is thus much
easier to discern in Fig. 5 than it is in Fig. 3.

The EOF analysis was then repeated on the normalised spectra and
the first mode (Fig. 6, top panel), which described changes in spectral
shape, was found to be almost identical to the second mode of the
un-normalised spectra (Fig. 4, second panel). Normalisation of the
spectra meant that variability associated with changes in spectral
shape accounted for a much greater proportion of the variance—72.4%
for normalised spectra (Fig. 6, top panel) as compared with 5.1% for
un-normalised spectra (Fig. 4, second panel)—and thereby provided a
more sensitive means to detect variability in AOP spectral shapes
brought about by changes in water constituents. It is important to
note that normalising the spectra made little change to the cumulative
proportion of variance that the first four modes represented—99.6%
for un-normalised spectra (Fig. 4) and 98.3% for normalised spectra
(Fig. 6).

The modes of oscillation in Fig. 6 are interpretable as signatures of
changes in the optical properties of the constituents of the water
column. Mode 1 represents variation in the water's colour, and is likely
the signature of bulk oscillations in biomass concentration. Mode 2
superficially resembles the oscillation in the amplitude of 〈Rrs(λ)〉, but
it does not exhibit the chlorophyll a fluorescence emission peak at
~683 nm captured by mode 1, suggesting that it is not associated with
Chl a. Furthermore, it exhibits an almost exponential shape from 400
to ~555 nm that resembles what might result from light absorbed by
CDOM. This mode may therefore be the signature of changes in the

Fig. 3. Remote sensing reflectance, Rrs(λ), derived from HyperPro measurements
obtained during the period February 2009–March 2010 at the Compass Buoy station.

Fig. 4. Loadings, percent variance and cumulative proportion of variance represented
for modes 1–4 of EOF analysis of Rrs(λ). Fig. 5. Integral-normalised Rrs(λ), 〈Rrs(λ)〉.

76 S.E. Craig et al. / Remote Sensing of Environment 119 (2012) 72–83

1.	  Hyperspectral	  AOP

2.	  EOF	  analysis

EOF	  scores

3.	  Model	  to	  es.mate	  IOPs
Mul.ple	  linear	  regression

EOF	  scores
Predictor	  variables

Response	  
variable

IOPs

Craig	  et	  al.	  (2012),	  RSE,	  119,	  72-‐83



PACE	  Science	  Team	  Mee/ng	  14-‐16	  January	  2015,	  College	  Park	  Marrio@,	  MD

Algorithm	  PerformanceAuthor's personal copy

andwhere yi is the ith observation and ŷi the i
thmodelled value. The units

of both these quantities are in decades of log10 space and not easily
translated into absolute terms. Therefore, following Campbell et al.
(2002) and Friedrichs et al. (2009) we calculated a dimensionless inverse
transformed value for bias from:

Fmed ¼ 10bias ð7Þ

where Fmed is themedian value of the ratio ŷ i
yi
. So, for example, if Fmed is 1,

there is no model bias; if Fmed is 2, the model overestimates by a factor of
2; if Fmed is 0.5, the model underestimates by a factor of 2.

Fig. 7 shows a plot of measured Chl a versus Chl aRrs. An R2 value of
0.839 (N=42) and RMSE=0.172 was obtained, and the data showed
a strong linear relationship with a bias of almost zero
(−2.908×10−16, Fig. 7, Table 4).

Comparisons of measured aph(λ) with modelled aphRrs(λ) derived
from Eq. (4) at selected wavelengths showed that aphRrs(λ) was tightly
clustered around the 1:1 line, with the exception of a small number
of data points where aphRrs(λ) was obviously overestimated (Fig. 8).
To assess the model's success over all wavelengths, we calculated
spectrally resolved R2 and RMSE (Fig. 9, Table 5). Much of the variabil-
ity was explained: R2(λ) (N=42; Fig. 9(a)) was found to vary
between 0.771 at 547 nm to 0.910 at 655 nm. Interestingly, the
peaks exhibited in the R2(λ) spectrum at ~420 nm and 655 nm did
not correspond exactly to the positions of peak phytoplankton
absorption, which were centred at approximately 440 nm and
675 nm (Fig. 1). A small trough was observed at ~683 nm, perhaps
due to the fact that chlorophyll fluorescence emission peaks in this
region and adds, rather than removes, photons to the system with
variable fluorescence efficiencies (Huot et al., 2007). It is possible
that some of this fluorescence yield variability may not have been
captured by the first four EOFs.

RMSE (Fig. 9(b)) was an approximate mirror image of R2(λ), and
ranged from 0.083 at 418 nm to 0.130 at 520 nm. At~683 nm a local
maximum was observed that corresponded to the minimum
observed in the R2(λ) spectra at the same wavelength and thought
to be associated with chlorophyll a fluorescence.

The fact that the models accurately estimated both Chl a and
aph(λ) in optically complex waters is very encouraging and indicates
that in our dataset, spectral shape, rather than magnitude, contains
much of the necessary information required to build accurate
models. This ability to capture variability in Rrs(λ) spectral shape
brought about by changes in phytoplankton absorption is a feature
that could ultimately be exploited for tracking changes in phyto-
plankton community composition (c.f. Ciotti and Bricaud (2006),
Hirata et al. (2008)).

An interesting additional result of our analysis was that using
integral-normalised Lu(λ) spectra (〈Lu(λ)〉; dimensionless) in place
of 〈Rrs(λ)〉 spectra produced results very similar to those reported
above. For example, modelling Chl a and aph(443) using 〈Lu(λ)〉
resulted in R2 values of 0.848 and 0.899 respectively. The idea
behind normalisation by Es(λ) when calculating Rrs(λ) is to account
for changes in ambient irradiance. Normalising Lu(λ) spectra as in
Eq. (2) apparently satisfies this purpose, and, significantly, negates
the need for an expensive Es(λ) sensor. This result emphasized the
key idea of our AOP-EOF model—that it is the colour of the water
quantified by spectral shape, and not spectral amplitude, that caries
most of the information about Chl a and aph(λ).

Fig. 7. Measured versus modelled Chl a from AOP-EOF model.

Table 4
Statistics for the hyperspectral and synthetic MERIS AOP-EOF Chl a models.

R2 bias Fmed RMSE

Chl aRrs 0.839 −2.908×10−16 1.000 0.172
Chl aRrsSMERIS

0.831 −2.260×10−16 1.000 0.176

N=42 for both models. Units are log 10[mg m-3]. Fmed is dimensionless.

Fig. 8. Measured versus modelled phytoplankton absorption, aphRrs(λ), at selected
wavelengths.

Fig. 9. Spectrally resolved statistics for aphRrs(λ). (a) R2(λ), (b) RMSE(λ), (N=42).
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andwhere yi is the ith observation and ŷi the i
thmodelled value. The units

of both these quantities are in decades of log10 space and not easily
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(2002) and Friedrichs et al. (2009) we calculated a dimensionless inverse
transformed value for bias from:

Fmed ¼ 10bias ð7Þ

where Fmed is themedian value of the ratio ŷ i
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Fig. 7 shows a plot of measured Chl a versus Chl aRrs. An R2 value of
0.839 (N=42) and RMSE=0.172 was obtained, and the data showed
a strong linear relationship with a bias of almost zero
(−2.908×10−16, Fig. 7, Table 4).

Comparisons of measured aph(λ) with modelled aphRrs(λ) derived
from Eq. (4) at selected wavelengths showed that aphRrs(λ) was tightly
clustered around the 1:1 line, with the exception of a small number
of data points where aphRrs(λ) was obviously overestimated (Fig. 8).
To assess the model's success over all wavelengths, we calculated
spectrally resolved R2 and RMSE (Fig. 9, Table 5). Much of the variabil-
ity was explained: R2(λ) (N=42; Fig. 9(a)) was found to vary
between 0.771 at 547 nm to 0.910 at 655 nm. Interestingly, the
peaks exhibited in the R2(λ) spectrum at ~420 nm and 655 nm did
not correspond exactly to the positions of peak phytoplankton
absorption, which were centred at approximately 440 nm and
675 nm (Fig. 1). A small trough was observed at ~683 nm, perhaps
due to the fact that chlorophyll fluorescence emission peaks in this
region and adds, rather than removes, photons to the system with
variable fluorescence efficiencies (Huot et al., 2007). It is possible
that some of this fluorescence yield variability may not have been
captured by the first four EOFs.

RMSE (Fig. 9(b)) was an approximate mirror image of R2(λ), and
ranged from 0.083 at 418 nm to 0.130 at 520 nm. At~683 nm a local
maximum was observed that corresponded to the minimum
observed in the R2(λ) spectra at the same wavelength and thought
to be associated with chlorophyll a fluorescence.

The fact that the models accurately estimated both Chl a and
aph(λ) in optically complex waters is very encouraging and indicates
that in our dataset, spectral shape, rather than magnitude, contains
much of the necessary information required to build accurate
models. This ability to capture variability in Rrs(λ) spectral shape
brought about by changes in phytoplankton absorption is a feature
that could ultimately be exploited for tracking changes in phyto-
plankton community composition (c.f. Ciotti and Bricaud (2006),
Hirata et al. (2008)).

An interesting additional result of our analysis was that using
integral-normalised Lu(λ) spectra (〈Lu(λ)〉; dimensionless) in place
of 〈Rrs(λ)〉 spectra produced results very similar to those reported
above. For example, modelling Chl a and aph(443) using 〈Lu(λ)〉
resulted in R2 values of 0.848 and 0.899 respectively. The idea
behind normalisation by Es(λ) when calculating Rrs(λ) is to account
for changes in ambient irradiance. Normalising Lu(λ) spectra as in
Eq. (2) apparently satisfies this purpose, and, significantly, negates
the need for an expensive Es(λ) sensor. This result emphasized the
key idea of our AOP-EOF model—that it is the colour of the water
quantified by spectral shape, and not spectral amplitude, that caries
most of the information about Chl a and aph(λ).

Fig. 7. Measured versus modelled Chl a from AOP-EOF model.

Table 4
Statistics for the hyperspectral and synthetic MERIS AOP-EOF Chl a models.

R2 bias Fmed RMSE

Chl aRrs 0.839 −2.908×10−16 1.000 0.172
Chl aRrsSMERIS

0.831 −2.260×10−16 1.000 0.176

N=42 for both models. Units are log 10[mg m-3]. Fmed is dimensionless.

Fig. 8. Measured versus modelled phytoplankton absorption, aphRrs(λ), at selected
wavelengths.

Fig. 9. Spectrally resolved statistics for aphRrs(λ). (a) R2(λ), (b) RMSE(λ), (N=42).

78 S.E. Craig et al. / Remote Sensing of Environment 119 (2012) 72–83

0.90

0.85

0.80

0.12

0.10

0.08
400 500 600 700

wavelength	  (nm)

 4 

models were used to accurately derive absorption, backscattering (Craig et al. 2012a & in prep.) 
and ultraviolet diffuse attenuation coefficients (Barnes et al. 2014) from MODIS Aqua data 
measured in optically complex coastal waters that typically pose difficulties for conventional 
ocean color algorithms. 

In all of these studies, it was clearly stated that the EOF approach was intended to produce 
local models in scenarios where accurate derivation of IOPs was challenging using conventional 
approaches. The models must be trained using appropriate data that accounts for as much variance 
as possible, but ultimately, they provided accurate estimates of IOPs in optically complex waters 
that represent regions of highly significant ecological or biogeochemical processes. 
 

  
The approach is computationally inexpensive and generic, i.e. it can be implemented in any 
scenario in which reflectance spectra and corresponding in situ training data are available. 
Additionally, as more data become available, they can be added to the matrix of existing data, 
allowing the model to improve or ‘evolve’ in a way analogous to a state space model. 

 

2. Proposed Research 

2.1 Objectives 
 
The objective of this project is to develop an approach to derive accurate estimates of inherent 
optical properties (IOPs) from top of atmosphere (TOA) satellite radiance, thereby bypassing 
standard atmospheric correction requirements. This is of particular relevance to coastal and 
inland water bodies where retrieval of robust ocean color products is notoriously challenging, and 
is frequently hampered by difficulties in achieving accurate atmospheric correction. The 
approach may be used for all waters, but most importantly, offers a means to accurately 
estimate IOPs from ocean color in scenarios where it may otherwise not be possible. 
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Fig. 3. Examples of EOF models derived 
from hyperspectral Rrs in Big Bend, FL 
(Craig et al. 2012a, Craig et al. in prep). 
Results for (a) Absorption by 
phytoplankton 443 nm, aph(443). (b) 
Absorption by CDOM + detritus 
combined at 443 nm, acdm(443). (c) Total 
absorption at 488 nm, atot(488). (d) 
Particulate backscattering at 700 nm, 
bbp(700). Fmed is a metric of model bias. 
If Fmed is 1, there is no model bias; if Fmed 
is 2, the model overestimates by a factor 
of 2; if Fmed is 0.5, the model 
underestimates by a factor of 2. 

Bedford	  Basin,	  Canada Big	  Bend,	  FL

• Region-‐specific,	  in	  situ	  hyperspectral	  models	  applied	  to	  waters	  where	  
standard	  approaches	  perform	  poorly

• Models	  showed	  excellent	  performance
• Satellite-‐derived	  models	  show	  comparable	  performance

Craig	  et	  al.	  (2012);	  Craig,	  Cannizzaro,	  Hu	  et	  al.	  (in	  prep)

Absorp.on	  is	  heavily	  dominated	  by	  
CDOM	  at	  both	  study	  sites
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EOF	  Algorithm	  for	  Top	  of	  Atmosphere	  Measurements

• Models	  accurately	  esFmate	  IOPs	  with	  
staFsFcs	  comparable	  to	  GIOP

• Cross	  validaFon	  confirms	  models	  are	  robust	  
&	  not	  overtrained

• Rayleigh-‐corrected	  reflectance	  models	  
perform	  similarly	  to	  EOF	  Rrs	  models	  (not	  shown)

• EOF	  ρt	  models	  also	  perform	  similarly	  (e.g.r2	  
reduced	  by	  few	  %)
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• Encouraging	  similar	  results	  found	  for	  a	  small	  MERIS	  dataset	  where	  
atmospheric	  correcFon	  is	  typically	  extremely	  challenging	  (not	  shown)
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Ac.vi.es	  Proposed	  for	  PACE	  ST
1.Comprehensive	  characterisa.on	  of	  TOA	  EOF	  model	  using	  a	  
synthe.c	  dataset
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3.2 Model Development and Assessment Using HICO and CASI Datasets 
 
There are currently several HICO targets identified in optically complex areas where regular in situ 
validation data is collected, and include Bedford Basin, Canada, Chesapeake Bay, Monterey Bay, 
CA, Southern California Bight and Eastsound, WA. Model training data availability will be 
dependent on HICO targeting schedules and overpass conditions, and this dataset will be 
assembled on an opportunistic basis. Dr. Craig collaborates closely with scientists at the Bedford 
Institute of Oceanography who perform comprehensive weekly water sampling activities at the 
Bedford Basin target, the schedule of which can be easily modified to accommodate HICO 
overpasses. The possibility of collecting a HICO data set over the Bedford Basin and Scotian Shelf 
region represents an excellent opportunity to integrate hyperspectral satellite ocean color 
measurements with sentinel ecological and oceanographic studies that have taken place at these 
sites for nearly 20 years (Li and Harrison 2008; Therriault et al. 1998). 
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Fig. 7. Schematic showing the conceptual steps involved in generating a synthetic TOA Lt 
dataset. λ, lat, θ, U and OAC in the Hydolight Lw parentheses represent wavelength, 
latitude, solar zenith angle, wind speed used to describe the wind blown surface ocean 
condition, and optically active water constituents respectively. atmos, O3, AOD in the 
MODTRAN Lpath, t, T parentheses represent atmospheric aerosol model, ozone and 
aerosol optical thickness respectively. These dependencies have been omitted for brevity 
in the sketches showing LUT extraction, model development and testing. 

2.Model	  development	  and	  assessment	  using	  HICO	  &	  CASI	  datasets

3.Pseudo-‐simula.on	  of	  a	  hyperspectral	  NOMAD	  dataset
➡ This	  may	  now	  be	  unnecessary	  if	  Jeremy	  Werdell	  is	  producing	  
a	  ‘real’	  hyperspectral	  NOMAD

• TOA	  radiances	  generated	  using	  
Hydrolight-‐MODTRAN	  coupler	  (Pahlevan	  
et	  al.	  2014)	  ➙	  mulF-‐dimensional	  LUT

• LUT	  provides	  the	  means	  to:
-‐ conduct	  sensiFvity	  analyses
-‐ characterise	  best	  ways	  to	  train	  &	  
implement	  the	  model:	  global,	  water	  
type,	  spectral	  shape,	  regional???
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Summary
• A	  straighdorward,	  computaFonally	  inexpensive	  approach	  to	  derive	  
accurate	  models	  for	  IOPs	  from	  top	  of	  atmosphere	  satellite	  products	  has	  
been	  developed

• Offers	  a	  means	  to	  derive	  ocean	  colour	  products	  in	  scenarios	  where	  it	  
may	  otherwise	  not	  be	  possible	  -‐	  water	  opFcal	  complexity,	  challenges	  in	  
achieving	  atmospheric	  correcFon	  (coastal	  &	  inland	  water	  bodies)

Fit	  with	  PACE	  IOP	  ST	  and	  Team	  as	  a	  Whole
• The	  approach	  is	  likely	  to	  be	  most	  valuable	  in	  opFcally	  complex	  waters,	  
e.g.	  coasts,	  inland.	  The	  PACE	  SDT	  idenFfied	  several	  coastal	  science	  
quesFons.

• Consult	  IOP	  colleagues	  to	  idenFfy	  where	  the	  EOF	  approach	  may	  be	  most	  
useful	  ➙	  quanFtaFvely	  compare	  its	  performance	  with	  other	  IOP	  
algorithms	  -‐	  uncertainFes

• Welcome	  input	  and	  suggesFons	  from	  AC	  subgroup	  on	  how	  best	  to	  
simulate	  ‘challenging’	  atmospheric	  scenarios


