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1. INTRODUCTION

Standardization of methods to assess and assign quality metrics to satellite
ocean color radiometry and derived geophysical products has become para-
mount with the inclusion of the marine reflectance and chlorophyll-a con-
centration (Chla) as essential climate variables (ECV; [1]) and the recognition
that optical remote sensing of the oceans can only contribute to climate
research if and when a continuous succession of satellite missions can be
shown to collectively provide a consistent, long-term record with known un-
certainties. In 20 years, the community has made significant advancements
toward that objective, but providing a complete uncertainty budget for all
products and for all conditions remains a daunting task. In the retrieval
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of marine water-leaving radiance from observed top-of-atmosphere
radiance, the sources of uncertainties include those associated with propaga-
tion of sensor noise and radiometric calibration and characterization errors, as
well as a multitude of uncertainties associated with the modeling and removal
of effects from the atmosphere and sea surface. This chapter describes some
common approaches used to assess quality and consistency of ocean color
satellite products and reviews the current status of uncertainty quantification in
the field. Its focus is on the primary ocean color product, the spectrum of
marine reflectance Rrs, but uncertainties in some derived products such as the
Chla or inherent optical properties (IOPs) will also be considered.

2. VALIDATION OF SATELLITE PRODUCTS

The primary method to assess satellite data is through direct comparison of a
satellite product with near contemporaneous and colocated in situ measure-
ments of the same quantity. Using the field data as a reference, such comparisons
can provide estimates of the uncertainty associated with the satellite product.
For derived products that rely on empirical algorithms, the in situ validation data
set should be independent of any measurements used to define or tune the sat-
ellite retrieval algorithm. Unfortunately, the collection of high quality field
measurements of optical radiometry for validation is challenging due to difficult
environmental conditions, cloud cover and other factors that restrict remote
observation, and logistical difficulties of ocean access, thus leading to a rela-
tively limited geographic and temporal sampling of available in situ validation
data. As an alternative, simulated data sets have been used for validation studies,
since they can be considered error-free and can cover a large range of optical
conditions [2]. They can also be produced at any desired wavelengths while
validation of multispectral quantities with field data may be hampered by dif-
ferences in wavelengths between the quantities to be compared. These differ-
ences need to be considered and possibly corrected in the validation exercise
(see Section 3.1). This section focuses on the assessment of satellite product
uncertainties through comparisons with field observations, including a
description of validation protocols and metrics and a discussion on validation
results. Error propagation techniques and the use of atmospheric correction and
bio-optical models to assess confidence intervals are also briefly reviewed.

2.1 Validation Protocol

The validation protocol needs to be well documented to ensure consistency of
approach between missions and products and reproducibility between studies.
The first step is the construction of the validation, or match-up, data set. A
match-up refers to the meaningful association of a satellite value with its
counterpart from field observations. This entails the extraction from the overall
satellite record of a subset of pixels or grid points, usually a square of Ns � Ns
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elements centered on the location of the field value and separated in time by
less than a small interval Dt. From the extracted values, one can derive three
main statistics: (1) the fraction fv of valid retrievals among the Ns � Ns po-
tential values, (2) the average (or median) satellite value, and (3) the spatial
coefficient of variation (CVs), which is the ratio of the standard deviation
within the Ns � Ns valid satellite measurements and the average value. A high
CVs means that the satellite retrievals show a large heterogeneity, which in
turn suggests a reduced probability that the in situ point measurement is
representative of the region observed by the satellite. In the interval �Dt, there
might be Nt field observations collected, so that an average (or median) value
and a temporal CVt can also be calculated. In that case, a high CVt is indic-
ative of changing conditions at the location of the measurements. Eventually,
the match-up selection protocol defines the allowed values for maximum Dt,
minimum fv and maximum CVs, as well as minimum Nt and maximum CVt if
applicable. Then, the satellite average (or median) value can be compared with
the average field observation or its datum closest to the satellite overpass time.

The choice of the threshold values should allow for a sufficient number of
match-ups to conduct a proper statistical analysis while maintaining the val-
idity of the comparison. This compromise should take into account the ex-
pected environmental conditions. For instance Bailey and Werdell [3] have
selected Ns ¼ 5, Dt ¼ 3-h, fv of 50% and CVs of 15% for a global validation
analysis that relies on many points in open ocean where conditions are thought
more stable. Zibordi et al. [4] have used Ns ¼ 3, Dt ¼ 2-h, fv of 100% and CVs

of 20% for validation at a coastal station, the Acqua Alta Oceanographic
Tower (AAOT) located in the northern Adriatic Sea. Recommended values can
be given, with Ns of 3e5, Dt of 1e4-h, fv larger than 50%, and CVs of less
than 20% for some of the products being validated (typically Rrs at a selected
wavelength). The choice of threshold values should be adapted to the condi-
tions associated with the validation exercise, with dynamic coastal environ-
ments generally requiring more stringent criteria. It is good practice to test
several thresholds to assess how validation statistics are affected. For instance,
Feng et al. [5] showed how validation statistics improved with more stringent
match-up selection criteria. Such an analysis can also provide insight into the
degree of representativeness of the comparison, quantifying the discrepancy in
scale and time of observation between the two measurement systems. For Rrs

validation, it is also recommended to operate the selection protocol on the
spectrum as a whole and not independently on separate bands; indeed the
selection of varying numbers of data points for the different channels hinders a
consistent assessment over the spectral domain of interest.

Ideally, a validation analysis should integrate the knowledge of the un-
certainties associated with the field observations. Comprehensive validation
exercises often combine in situ data collected by a variety of disparate systems
and investigators using different instruments and measurement techniques. In
such cases it is recommended to assess the dependence of the validation results
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on the different data sets gathered for the exercise. More generally, if enough
in situ data are available, the sensitivity of the validation statistics to particular
sets of match-ups can be quantified by bootstrapping techniques [6].

Figure 1 shows an example of match-ups obtained at the AAOT site for the
sensor MOderate Resolution Spectroradiometer (MODIS) on-board Aqua,
both in terms of reflectance Rrs and aerosol optical thickness sA. Over the
period 2002e2012, the number of match-ups found for Rrs is 549, with Ns ¼ 3,
Dt ¼ 1 h, and CVs ¼ 20% for Rrs between 488 and 547 nm. More match-ups
are obtained for the aerosol products, with the added conditions of Nt ¼ 2 and
CVt ¼ 20% for sA at 488 nm.

2.2 Validation Metrics

There are a host of statistical metrics that can be used to compare two data
sets, but a minimum set for validation would include the number of match-ups
(together with the number of potential match-ups) and the estimates of the
scatter and systematic difference (bias) between the two distributions.

FIGURE 1 Comparison between above-water radiometry and MODIS-Aqua products for Rrs at

443 and 547 nm, and aerosol optical thickness sA at 547 nm and Ångström exponent a. Validation

statistics are introduced in Section 2.2.
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According to the range of values considered, these statistics can be expressed
as absolute or relative values, with a prior log transformation typically applied
for Chla or IOPs. For radiometric products, it is important to document both a
measure of uncertainty in radiometric units (sr�1 for Rrs) and a measure of
relative uncertainty. Indeed, relative differences tend to increase when the
values of Rrs are small, up to tens of percent if the in situ value is near zero. In
that case, the difference in radiometric units is more meaningful.

Relative differences between satellite products (yi)i¼1,N and field obser-
vations (xi)i¼1,N can be expressed in %, and computed in terms of mean ab-
solute difference or mean difference (i.e., bias) with respect to the field
observations:

jjj ¼ 100$
1

N

XN
i¼1

jyi � xij
xi

(1)

j ¼ 100$
1

N

XN
i¼1

yi � xi
xi

(2)

while the equivalent metrics in geophysical units can be computed as:

jdj ¼ 1

N

XN
i¼1

jyi � xij (3)

d ¼ 1

N

XN
i¼1

ðyi � xiÞ ¼ y� x (4)

where the overbar means average values. Root-mean-square (RMS) differ-
ences between the satellite and in situ measurements can be written as:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � xiÞ2
vuut (5)

Du ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � y� xi þ xÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � d2

p
(6)

The total root-mean-square difference D can be partitioned into a part due
to the bias d and the unbiased (or centered) root-mean-square difference Du

quantifying non-systematic effects. In the above equation, the summation
operator has been used (which means that quantities are averages), but other
operators can be preferred like the median or some form of interquantile
statistics. Other metrics can be included like the coefficient of determination,
r2, slope and intercept of linear regression, average ratios, etc... For spectral
quantities like Rrs, input to bio-optical algorithms, quantifying how well the
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spectral shape is respected by the satellite products is also worthy information
that can be quantified by the c2 distribution measuring the goodness of fit
between in situ and satellite Rrs normalized at one wavelength of reference [7].

To document differences (including their systematic component), it is
recommended to compute at least jjj, j, D (or Du) and d. As illustration,
Figure 2 shows spectral target diagrams that display Du and d simultaneously
for various sensors and two validation sites, AAOT and the Marine Optical
Buoy (MOBy) near Hawaii [8]. By construction, D is the distance between a
point and the origin (Equation 6). The value of D (or Du) decreases with
increasing wavelength for MODIS compared to MOBy data, with virtually no
bias, which is expected considering the role of that site for vicarious cali-
bration [9]. This is also true for the validation results obtained at AAOT, but
significant values can be observed for the bias d, generally negative for
MODIS, and positive for the Medium Resolution Imaging Spectrometer
(MERIS) and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (vali-
dation results for MODIS are the same as shown on Figure 1).

2.3 Analysis of Validation Results

Performing accurate radiometric in situ oceanographic measurements to derive
Rrs is difficult and expensive, with the implication that match-ups with satellite
data are not abundant and are unevenly distributed in space and time [3]. More
match-ups are available for Chla, although large expanses of ocean remain
devoid of validation data [10]. Using the SeaWiFS Bio-optical Archive and

(a) (b)

FIGURE 2 Spectral target diagram for validation results for MODIS-Aqua (a) at Marine Optical

Buoy (MOBy) (N ¼ 229) and Acqua Alta Oceanographic Tower (AAOT) (N ¼ 549, except at

531 nm, N¼ 176) and (b) SeaWiFS (N¼ 369) and MERIS (N ¼ 149) at AAOT (right). Axes are in

units of sr�1. See text for the definition of statistical quantities.
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Storage System (SeaBASS) [11], a global community field data repository for
marine bio-optical measurements, and following the standard protocols in [3],
one obtains less than 1000 match-ups for the 13-year SeaWiFS mission
(numbers vary by wavelength).

Figure 3 is a snapshot of validation results expressed as spectra of D be-
tween satellite and field data. MODIS-Aqua D values are illustrated for various
data sets (Figure 3(a)), SeaBASS, BiOMaP (representative of European waters

(a) (b)

(c) (d)

FIGURE 3 RMS differences between satellite and field data of Rrs (in sr�1): (a) MODIS-Aqua

compared to various data sets from AERONET-OC sites (see text) as well as SeaWiFS Bio-

optical Archive and Storage System (SeaBASS), BiOMaP, and Marine Optical Buoy (MOBy);

(b) results for MODIS-Aqua (N ¼ 549) and Terra (270), MERIS (N ¼ 149), SeaWiFS (N ¼ 369)

and VIIRS (N ¼ 70) at Acqua Alta Oceanographic Tower (AAOT); (c) results for MERIS pro-

cessed by ESA processor (MERIS Ground Segment, MEGS, version 7 as dotted line, version 8

otherwise) given for the Bohai Sea [12], the northwest Mediterranean Sea [13], South African (SA)

coastal waters [14], and AERONET-OC sites, AAOT (N ¼ 86), GDLT and HLT (Baltic Sea) and

GLR (Black Sea) [15]. GLI results are represented by the black dashed line [16]. (d) Results

obtained in coastal waters for SeaWiFS (dotted line) [17] and MODIS-Aqua [18] with different

atmospheric correction schemes, including the standard SeaDAS (STD, in blue). When appropriate

the reference source is given.
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[19]), and MOBy, as well as several Aerosol Robotic Network - Ocean Color
(AERONET-OC) sites [20] located in the northern Adriatic Sea (AAOT), Baltic
Sea (Gustav Dalen and Helsinki Lighthouse Towers, GDLT and HLT, respec-
tively), Black Sea (Gloria, GLR), Chesapeake Bay entrance (CERES Ocean
Validation Experiment, COVE), coastal Gulf of Mexico (WAVE), coastal
southern California (University of Southern California, USC), and Persian Gulf
(Abu al-Bukhoosh Platform, AABP). The number of match-ups varies from 15
(AABP) to 549 (AAOT); the number of wavelengths represented is also variable
(e.g., the SeaBASS validation results are shown at 412, 443, 488, and 667 nm
only). Some spectra show a value at 547 and 555 nm, the latter being a band not
originally intended for ocean color applications by the MODIS mission. Most D
values are found between 0.0008 and 0.0015 sr�1 at 412 nm, down to between
0.0002 and 0.0004 sr�1 at 667 nm (with the exception of MOBy where D is
lower). The D values are partly conditioned by the actual Rrs values; for
instance, D is lowest at MOBy in the green bands, whereas it is lowest at the
Baltic sites in the blue part of the spectrum, where Rrs is often very low.

There is a clearer consistency of D spectra when considering validation
results at a single site for different missions processed with the same National
Aeronautics and Space Administration (NASA)-standard algorithms
(Figure 3(b) at AAOT). Results for standard European Space Agency (ESA)
MERIS products are shown on Figure 3(c), for the Bohai Sea (N ¼ 17) [12],
the northwest Mediterranean Sea (N ¼ 64 except at 412 nm) [13], South
African coastal waters (N ¼ 14) [14], and AERONET-OC sites in the northern
Adriatic Sea (AAOT, N ¼ 86), Baltic Sea (GDLT and HLT, N ¼ 39) and Black
Sea (GLR, N ¼ 12) [15]. For completeness, Global Imager (GLI) results are
also shown (N ¼ 435 at 443 nm) [16]. MERIS D values tend to be fairly high,
particularly in the blue. The case of the Bohai Sea is fairly unique and asso-
ciated with highly scattering waters with Rrs maxima beyond 550 nm [12].
This type of D spectra should be confirmed with more match-ups.

Finally, interesting studies have been done to compare atmospheric
correction schemes with the same validation data set [7]. Two examples of
such exercises are reported on Figure 3(d), comparing SeaDAS results with
other schemes [17,18]. Validation statistics appear fairly consistent for a given
sensor, with the D values associated with the standard scheme often being the
lowest. The family of D curves of Figure 3 could be presented for other sta-
tistical indicators. Relative differences, jjj or j, would show more variations
particularly between different locations, jjj varying from 10% to tens of
percent. In fact, jjj spectra are often an inverted image of Rrs spectra, with jjj
values that are high in red bands in oligotrophic waters or that may exceed
100% at 412 nm in absorbing waters like in the Baltic Sea [4].

Other Rrs validation exercises have of course been conducted, applied to
specific sensors like the Ocean Color and Temperature Scanner (OCTS) [21],
Visible Infrared Imaging Radiometer Suite (VIIRS) [22], or Geostationary
Ocean Color Imager (GOCI) [23,24], specific coastal regions (e.g., coastal
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Chinese waters [25]), or to test alternative atmospheric corrections [26,27].
Many of these studies suffer from a limited number of match-ups often
collected in restricted geographical areas, and this regional scope raises the
question of the validity of validation results on larger scales. More work is
needed to extend, analyze, and understand validation results across missions,
atmospheric correction schemes, and field data sets or locations, with the goal
to enable the extension of point validation results sparsely distributed in space
to the global ocean. This issue will be further discussed in this and the
following sections.

Validation analyses ideally should go beyond simply providing statistics
for a given location and/or season by investigating possible dependences of the
validation results on time or season, geometry of observation and illumination,
atmospheric conditions, or marine properties. The benefit can be twofold, as
such studies can provide insights into the reasons for discrepancies between
satellite and in situ values, and also inform on other locations and times where
these validation statistics may be applicable. Such analyses require a signifi-
cant number of match-ups, and are therefore few in number.

The regional dependence of optical properties has been well documented.
For instance, Szeto et al. [28] have related the departures from a global average
relationship between Rrs ratios and Chla to different ocean basins, and sug-
gested that this relationship varies across basins as a function of the relative
contributions of the different optically significant constituents [28,29]. For the
AAOT site, Mélin et al. [30] studied the dependence of validation results for
Rrs on a Case-1 versus Case-2 water partition, water single scattering albedo,
angles of observation and illumination, air mass, and aerosol optical thickness,
using approximately 80 SeaWiFS match-ups. The only clear dependence was
found for sA, with biases of Rrs significantly increasing from negative to
positive with increasing sA. At the same site, for an updated atmospheric
correction applied to SeaWiFS and MODIS, Zibordi et al. [31] highlighted an
increase in bias and RMS difference for Rrs in winter and for high solar zenith
angles. The number of match-ups was much larger for this analysis based on
field observations collected by autonomous instruments. For the same match-
up data set, no significant multiannual trends were found for Rrs validation
statistics [32]. Using the large number of match-ups found at the AAOT site,
D’Alimonte et al. [33] formulated a regional model of the differences between
satellite and field data of Rrs that depended mainly on Rrs itself; another
regional model has been defined for Baltic sites [4]. This work suggests that
these differences could vary according to water optical properties.

Moore et al. [34] explored this hypothesis further in the context of optical
classification applied to Chla uncertainty determination. Chla uncertainty sta-
tistics were first determined for a predefined set of optical water types (or
classes), allowing the extension of these statistics to any location on the basis of
the class membership of the corresponding Rrs. Assuming that uncertainties are
indeed specific to each water type, such an approach can be used to derive
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global maps of Chla uncertainties. Optical water types have also been used to
analyze and discuss validation results for Rrs in coastal regions [18]. A similar
exercise has been performed for the match-ups gathered at the AAOT site using
a set of classes defined by Moore et al. [35]. Figure 4 shows Rrs associated with
the considered water types (type 9 is actually an ensemble of eight subtypes
originally developed to represent coccolithophore blooms) as well as validation
statistics for the optical types found in the validation data set. The RMS dif-
ference D increases from types 3 and 4 to type 7, while that for types 6 and 9 are
close to the overall average. Relative differences tend to be lower for clearer
waters (type 3) in the blue part of the spectrum (for jjj), while they are higher in
the red part where the signal is lower (types 3, 4, or 6). Under the assumption
that validation results obtained here are inherent to each optical water type, they
could be tentatively extended to similar water types in other regions. A merit of
such an approach is that its uncertainty estimates remain linked to field data.

2.4 Model-Based Approaches to Uncertainty Analysis
and Error Propagation

Models themselves can be used to support the assessment of satellite products,
a path explored mostly for bio-optical algorithms. The retrieval of bio-optical
properties from ocean color radiometry often involves the spectral matching of

0

(a) (b)

(c) (d)

FIGURE 4 Dependence of validation statistics on optical water types at Acqua Alta Oceano-

graphic Tower (AAOT). (a) Mean Rrs for the optical water types defined in [35]; type 9 includes

eight subtypes. Validation results computed by types for (b) RMS difference D, (c) mean absolute

relative difference jjj, and (d) mean relative difference j. Results for all match-ups combined are

in black; results per optical type are shown with the same color code as for (a) only if the members

number at least 10 spectra.
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a bio-optical model to the spectral shape of the retrieved Rrs, and this inversion
process can provide valuable information on the uncertainties associated with
the algorithm design or sensitivity to radiometric error. The uncertainties
associated with Rrs, if known, are propagated through the bio-optical inversion
and compounded by two additional factors: (1) the approximations of the bio-
optical model in its description of the relationship between inherent and
apparent optical properties and its parameters describing the spectral shape of
IOPs, and (2) the ambiguity of the bio-optical model, which means that the
solution to the inversion is not necessarily unique [36,37].

Some studies have addressed uncertainties related to the parameters of the
bio-optical model, such as the phytoplankton specific absorption, the spectral
shape of the backscattering coefficient or the absorption by chromophoric dis-
solved organic matter and detrital particulates referred to as (CDM). Lee et al.
[38] applied error propagation to an algebraic bio-optical model [39] to deter-
mine the uncertainties of the derived IOPs as a function of model parameters
and the uncertainty of total absorption at a reference wavelength. The effect of
the uncertainties associated with bio-optical parameters (e.g., defining the
spectral shapes of phytoplankton and CDM absorption and backscattering co-
efficient) has been tested by running the inversion with different sets of pa-
rameters [40,41]. Wang et al. [40] studied the dispersion of the retrievals as a
measure of output uncertainty. These approaches did not consider the other
sources of uncertainties, including those of the input Rrs. Nonlinear inversion of
a bio-optical model provides interesting information on the uncertainty of the
output IOPs from the process of minimization of a cost function [42e45].
Additionally, cases with an unsatisfactory goodness-of-fit can be filtered out as
out-of-scope conditions. The uncertainty information derived from the inversion
process can accompany the retrieved IOP maps and is sometimes referred to as
uncertainty maps, though inversion confidence would be more appropriate ter-
minology. The inversion confidence can account for the variance associated with
the input Rrs, but it is only related to how the forward model fits the input Rrs

data, depending on the shape of the selected minimum of the cost function, and
does not cope with biases affecting Rrs or uncertainties on model formulation
and parameters. Development of quality indicator maps together with derived
products has also been performed using neural networks [46].

Some atmospheric correction schemes are also based on the minimization
of cost functions [47e49] and are amenable to the calculation of inversion
confidence estimates as explored with bio-optical algorithms. Typically, these
schemes have an embedded bio-optical model which constrains the distribu-
tion of retrieved Rrs. One study developed a stochastic approach to uncertainty
decomposition and estimation while explicitly considering the atmospheric
correction process [50]. Exercises of error propagation or accuracy analysis
[51,52] can also provide valuable insight on atmospheric correction perfor-
mance to support uncertainty assessments.

A model-based approach of a different kind has been proposed [53]
making use of Chla algorithms applied to low-Chla waters. For these
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conditions, the assumption is that the difference in Chla computed with a
standard band-ratio algorithm and with a three-band subtraction method [54]
originates from uncertainties associated with Rrs. Using SeaWiFS and
MODIS data, Rrs uncertainty estimates have been expressed as a function of
Chla (see Figure 7 introduced in Section 3.2). Even though this approach
does not apply to Chla values larger than 0.2 mg m�3, and does not spe-
cifically account for biases, this type of technique should be further
investigated.

Different methods, like those mentioned above, can inform us on various
aspects of the uncertainty associated with a given retrieval, and it is desirable
that their specific contributions and limitations to quantifying the overall un-
certainty budget be well understood. Restricting the discussion to bio-optical
algorithms producing Chla or IOPs, Table 1 is an attempt at broadly catego-
rizing the type of uncertainty estimates obtained by various methods. The un-
certainty on the derived product is assumed to stem from the uncertainty on
the input Rrs, the potential non-uniqueness of the solution, uncertainties on the
model formulation and parameters, and the uncertainties associated with the
inversion process. Clearly, validation integrates all these contributions, but is
affected by uncertainty in field data. Colocation techniques ([55], see Section
3.2) share this all-encompassing character but are limited in their temporal
resolution and do not consider systematic effects. Uncertainty propagation
techniques can potentially accommodate uncertainties on Rrs and model pa-
rameters, while using parameter ensembles (e.g., Ref. [40]) focuses on un-
certainties on model parameters and issues of uniqueness without accounting for
biases affecting Rrs. Finally, nonlinear inversions provide a diagnostic of product
confidence given an uncertainty on Rrs but usually do not account for biases or
parameter uncertainties. Complex approaches could combine the advantages of
these various techniques.

TABLE 1 Matrix Relating Error Sources Affecting Products of Bio-Optical

Algorithms and Different Methods Computing Uncertainty Terms

Rrs Uniqueness Parameters Inversion

Validation x,t

Uncertainty propagation [38] X,T X,T

Parameters ensemble [40] X,T

Nonlinear inversion [44] X,T X,T

Colocation [55] X,t

Cells with letters indicate the contributions to the uncertainty budget that are addressed by each type
of methods. Small letters refer to results obtained at selected locations x and times t, while capital
letters indicate estimates potentially obtained at each pixel. The first two types of approaches can
handle systematic effects (biases). References are only intended as general examples for a given
approach.
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3. COMPARISON OF CROSS-MISSION DATA PRODUCTS

The distribution of field observations is very uneven, with a sparse coverage of
the open ocean regions, particularly for optical properties. Comparison be-
tween satellite values can build upon a much larger statistical population and
can support the characterization of their uncertainties. More generally, the
comparison of products from different missions over their period of temporal
overlap is a key element of the consistency check of the overall data record.

The comparison of two or more data products can be conducted at several
levels. First, as for validation analyses, a variety of metrics may quantify the
differences between a common set of data points (e.g., average difference),
which is illustrated below. In the context of earth science, it is also interesting
to compare specific properties of each data record, like their spectral resolu-
tion, their spatial coverage, their inherent variability in space or time (do the
data sets have the same variance, do they show the same gradients?), their
seasonal cycles (do they show the same phenology?), or interannual signals.
Two data series ideally should show the same behavior for these properties, but
their relative importance depends on the envisioned application. Obviously, for
climate research, two data sets should provide a similar picture of seasonal to
interannual variations.

Even if processed consistently, which means with the same principles
guiding the calibration strategy and the data processing (same algorithms and
binning schemes, identical ancillary data), and compared for the same day, two
ocean color data sets will show differences. These result from various elements
[56] including differences in sensor design and spectral characteristics as well
as their implications in the specific processing codes, such as the sensitivity to
polarization, uncertainties associated with the calibration of the sensors, the
sensitivity of the atmospheric correction to different aerosol types or to a
different geometry of observation. Moreover, the different sensors view earth
at different times of the day, generating other sources of differences. Some
might be real as associated with changes in the water properties that could be
more readily studied with geostationary platforms [24]. But currently and in
most cases, these differences cannot be reliably distinguished from others that
are occasioned by the effect on the atmospheric correction of changes in the
geometry of illumination and the atmospheric content (aerosols, clouds) or
simply by noise. There is also a residual spatial mismatch as a result of the
remapping process or of different sizes and shapes of the pixels across the
satellite track. Still an additional source of differences is introduced as time
composites are created since these might be built with a different temporal
sampling. Finally, different products might differ because their processing
chains are not consistent, e.g., with a different calibration strategy or different
algorithms. With a view to create climate data records from different missions,
this should be avoided as much as possible. Such a consistency is readily
achieved if the different sensors share their main characteristics, for instance
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being similar multispectral sensors with a wavelength range of 400e900 nm as
is the case for the recent global ocean color missions SeaWiFS, MODIS, and
MERIS. This consistency may be questioned as sensors are launched with new
capabilities (channels in the ultraviolet or shortwave infrared, much higher
spectral resolution, geostationary observations) that open up novel options for
processing. A similar technical step took place from the Coastal Zone Color
Scanner (CZCS) to the more recent sensors, prompting questions on how to
process the data in a consistent manner [57].

This section reviews various approaches to compare satellite data sets.
First, the issue of band shifting is addressed. Indeed, differences in center
wavelengths need to be corrected prior to comparing spectral quantities.

3.1 Band Shift Correction

The various ocean color missions that have been in operation have a
different set of bands, which is an obstacle to a straightforward comparison
of their respective records of remote sensing reflectance, Rrs. For instance
the green ocean color band, which is often used as a reference band for bio-
optical algorithms, is centered at 547, 555, and 560 nm for the missions
MODIS, SeaWiFS, and MERIS, respectively. In practice it is hard to know
how a MODIS Rrs value at 547 nm compares relative to a SeaWiFS Rrs at
555 nm. It can be done in the framework of well-defined optical properties
like a Case-1 water model [58] where a certain spectral shape for Rrs is
expected for each value of the Chla leading to the definition of a set of
consistent empirical algorithms for the different sensors [59]. Such a
framework could be extended to more complex optical conditions but
covering the entire natural variability does not appear realistic. A similar
issue arises in validation analyses when field data that are collected as
multispectral measurements are compared with satellite Rrs. A few studies
have relied on general or regional relationships to perform an action called
band shift correction, whereby the Rrs value is expressed at a target wave-
length lt near an existing wavelength l0.

The practice of band shift correction has been developed for use in vali-
dation analyses [4,13,19,60,61], comparison between satellite products [62],
and as pre-processing before merging [63], with expressions linking inherent
and apparent optical properties such as:

RrsðltÞ ¼ Rrsðl0Þ f ðltÞ
QðltÞ

Qðl0Þ
f ðl0Þ

bbðltÞ
aðltÞ

aðl0Þ
bbðl0Þ (7)

where f relates apparent optical properties (irradiance reflectance) to IOPs
[64], Q is the ratio of irradiance and radiance just below the surface, and a and
bb are the total absorption and back-scattering coefficients, respectively.
Equation (7) requires the value of Chla to calculate f/Q [65] through look-up
tables computed in the framework of Case-1 water conditions.
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A common requirement for these approaches is knowledge of inherent
optical properties and/or concentrations of optically significant constituents
sufficient to predict the spectral shape of Rrs at least within small spectral
intervals. An approach recently developed makes use of the Quasi-Analytical
Algorithm (QAA) [39] to compute the absorption of phytoplankton aph, that of
CDM acdm, and the back-scattering coefficient associated with particles at
443 nm. Then IOPs are calculated at the target wavelength lt using the spectral
shapes of IOPs defined in the model (with the addition of the parameterization
by [66] for aph since QAA does not specify a spectral shape for that property).
Finally this bio-optical model is run in forward mode to calculate Rrs at lt.

The results of this band shift correction are illustrated by Figure 5. The
correction has been applied to a year (2003) of daily MODIS-Aqua Rrs data to
express them at the SeaWiFS bands. A MODIS value is computed at 510 nm by
running the conversion from488nmand from531 nm to510nm, and then taking a
weighted average. All spectra common to both sensors for a given spatial bin (of
a 12th-degree grid) and day have then been accumulated (49.8 million spectra).
Figure 5(a) shows the overall average over that population of the SeaWiFS Rrs

and the MODIS-Aqua original Rrs as well as the Rrs values obtained after band
shift. There is a discernible improvement in the agreement between corre-
sponding wavelengths, at 490 and 670 nm and more clearly at 555 nm. Even the
converted MODIS average value at 510 nm appears close to the SeaWiFS
counterpart. Also noticeable is the fact that the use of a linear interpolation
between 488 and 531 nm to compute a MODIS value at 510 nm would have
resulted in a gross overestimate. Figure 5(b) is the frequency distribution of the

(a) (b)

FIGURE 5 (a) Average of all daily Rrs coincident between MODIS-Aqua and SeaWiFS in 2003.

Curve with gray circles represent MODIS values without band shifting, while black circles

represent MODIS statistics computed after the band shifting correction has been applied. (b)

Histogram of the ratio between MODIS (with and without band shifting, in red and black,

respectively) and SeaWiFS Rrs in the green band.
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ratio of Rrs at the green band before and after correction, i.e., Rrs,A(547)/
Rrs,S(555) and Rrs,A(555)/Rrs,S(555) (where A and S denote MODIS-Aqua and
SeaWiFS, respectively). The median ratio decreases from 1.10 to 0.98. Band
shifting is an important tool to allow inter-mission comparison, but it also
contributes its own uncertainties that should be properly estimated.

3.2 Point-by-Point Comparison

The comparison between satellite products can be conducted for each grid
point in a manner similar to validation with in situ data, including with the
same metrics. Here again, statistics should at least provide a measure of scatter
and bias, in relative terms as well as in radiometric units for Rrs. In Section 2,
the quantity of reference in relative differences (i.e., the denominator) was the
in situ value, even though in situ observations are not error free. In the case of
a comparison between satellite products, the unbiased form of the relative
difference can be preferred (in %):

��j*
�� ¼ 200

1

N

XN
i¼1

jyi � xij
xi þ yi

(8)

j* ¼ 200
1

N

XN
i¼1

yi � xi
xi þ yi

(9)

jj*j and j* are referred to the average of the two products. The advantage
is to avoid arbitrarily selecting one product as the value of reference, and
numerically it prevents cases where only the denominator is close to zero. On
the other hand, the difference cannot be easily interpreted in terms of a dis-
tance with respect to a clearly identified reference.

To compare SeaWiFS and MODIS products, the MODIS Rrs data were re-
binned on the SeaWiFS 12th-degree grid, and then all daily values coincident
on that grid were accumulated into third-degree macro cells. Figure 6(a) shows
the resulting number of match-ups for the period 2003e2007. In general, the
number of comparison data available for assessment decreases going pole-
ward; on top of this, spatial patterns associated with persistent cloud or dust
coverage are readily seen, e.g., along the intertropical convergence zones.

FIGURE 6 (a) Total number of match-ups between MODIS and SeaWiFS (2003e2007) on a 3rd-

degree grid and (b) Mean relative difference j* between SeaWiFS and MODIS (in %).
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The unbiased mean relative difference j* is illustrated on Figure 6(b) for
Rrs at 443 nm. Most of the ocean is characterized by a relative bias not
exceeding 5%, but larger differences can be noticed in specific coastal or
tropical regions or in the northern Indian Ocean. Besides the spatial variations
shown by inter-mission differences, comparison maps also show temporal
variations, particularly changes associated with the seasonal cycle for apparent
or inherent optical properties [62,67]. Examples of temporal analyses are
provided in the next section.

If enough match-up data are available for a given grid point, more
advanced statistics can be developed. Let us consider two ensembles of N
coincident satellite values (xi)i¼1,N and (yi)i¼1,N, each modeled as a function of
a reference state r and zero-mean random errors d and ε:

xi ¼ ri þ di (10)

yi ¼ aþ bri þ εi (11)

with a and b additive and multiplicative biases, respectively, between x and y.
Assuming that d and ε are uncorrelated and independent of the reference state r, a
mathematical development of the variance and covariance terms lead to [55]:

s2d ¼ s2x �
1

b
sxy (12)

s2
ε
¼ s2y � bsxy (13)

which is a system of two equations with three unknowns. It can be solved with
an additional assumption, for instance considering that the two satellite
products, on the basis of validation analyses, have the same level of random
error [55]. Solving the system may also rely on the availability of a third in-
dependent data record using a triple colocation technique. This approach is
very powerful since it provides part of the uncertainty budget with the
same coverage of the satellite products. Depending on the number of match-
ups available, it can also be applied to separate seasons to capture variations
in time.

Assuming the same level of random error for SeaWiFS and MODIS
(s ¼ sd ¼ s

ε
) and using the match-up data base illustrated on Figure 6(a), a

global map of s is produced, with its global average shown on Figure 7. For
comparison, the average over subtropical gyre waters is also given together
with the uncertainty estimates for low-Chla waters given as a function of Chla
by a model-based approach [53], and the unbiased RMS difference Du ob-
tained by comparison between satellite and field data at the oligotrophic
MOBy site. The spectra of s and the results obtained by the model-based
approach are fairly comparable, even though the latter are higher for the
case Chla ¼ 0.15 mg m�3 in South Pacific waters. The MOBy validation
results Du for SeaWiFS and MODIS are also comparable with s except in blue
bands where they are closer to the model-based estimate for the case
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Chla ¼ 0.15 mg m�3 in South Pacific waters. Considering the diversity of
methods employed (colocation, model-based, point-wise validation), the
relative agreement between these curves is interesting while the sources of
differences should be further investigated.

3.3 Analysis of Time Series

A primary goal in development of ocean color ECVs is to enable the
assessment of long-term trends to support global climate research. This leads
to stringent requirements on radiometric stability, to ensure that systematic
errors such as uncorrected degradation in instrument radiometric response are
not misinterpreted as geophysical change. Comparative time-series analysis of
Rrs and derived products, either between satellite missions or relative to a
historical reference, can identify issues with instrument radiometric charac-
terization and temporal calibration stability. Analysis of the seasonal trends
observed in different latitudinal zones for MODIS-Aqua Rrs time-series rela-
tive to SeaWiFS, for example, contributed to the discovery of an error in
characterization of polarization sensitivity on MODIS [68]. Without the Sea-
WiFS time-series for comparison, this error may have never been identified,
and seasonal cycles in the ocean color signal from MODIS in climate critical
high-latitude regions would have been highly misleading. For products derived
using common algorithms, relative agreement between missions also
provides a measure of uncertainty for trend detection. Franz et al. [69], for

FIGURE 7 Uncertainty estimate s obtained by colocation between SeaWiFS and MODIS, with

global average (red) with standard deviation, and average over the subtropical gyres (blue). In gray

are overplotted estimates of the uncertainty term proposed in [53] for SeaWiFS and MODIS as a

function of Chla for the North Atlantic (NA) and South Pacific (SP) subtropical gyres. Validation

results Du obtained with Marine Optical Buoy (MOBy) data are shown in light blue. Curves with

circles are for SeaWiFS.
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example, used the average difference in regional monthly means between
consistently processed SeaWiFS and MODIS data as a measure of uncertainty
in the 15-year multi-mission time-series of Chla.

A typical time-series analysis starts with the data product of interest pro-
jected into a set of fixed geographic bins and averaged over specific temporal
intervals. A widely used example is the SeaWiFS 9.2-km binned product: a
globally distributed set of quasi-equal-area bins where the value of each bin
represents the local product average over 8-day or monthly time intervals [70].
The global data set or a subset of the bins (e.g., based on geography or water-
type classification) is then spatially averaged within each time interval, and the
averages are trended in time. The preferred time interval for compositing is a
trade-off between minimizing the geophysical variability lost to the average
and maximizing the number of observed (or filled) bins. When comparing
time-series between missions, it is also useful to first reduce the selected bins
within each time-interval to a set of common filled bins. This is critical for the
identification of anomalous sensor-calibration artifacts, as some missions show
systematic geographic gaps even after 8-days of compositing, and these
geographic sampling biases induce additional variability in mission-to-mission
differences.

As an example, Figure 8 shows Rrs trends from MODIS on Terra and
MODIS on Aqua, based on common bins over the overlapping missions.

FIGURE 8 Comparative common-bin time-series of MODIS-Terra and MODIS-Aqua.
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The measurements were restricted to include only those bins where water-
depth is greater than 1000 m (to avoid the complexities and diurnal vari-
ability of the coastal regions), and an average was computed over this
geographic subset for each month of the time-series. The comparison clearly
demonstrates a degradation in the radiometric stability of MODIS-Terra
relative to MODIS-Aqua that was traced to the MODIS-Terra instrument
calibration and subsequently corrected.

For a radiometrically stable sensor, the dominant variability in the derived
Rrs time-series for the deep oceans is a seasonal cycle associated with
phytoplankton productivity. Subtraction of this mean seasonal cycle from the
Rrs trends yields an anomaly time-series. While anomaly trends provide a
mechanism for investigating long-term geophysical changes in the ocean color
record, they can also serve as a powerful tool to identify sensor radiometric
instabilities. Figure 9 shows the anomaly in MODIS-Aqua Rrs(547) relative to
the mean seasonal cycle for the deep ocean gyres. At this wavelength, the Rrs

signal is relatively insensitive to small changes in Chla, and so we expect the
time-series in these very low productivity regions to show little variability, as
is the case for MODIS. For the 560-nm band of MERIS, however, the Rrs

anomaly time-series shows a strong deviation in 2005e2006 suggesting a
5e10% bias that was traced to a change in the operating state of the
instrument.

3.4 Climate Signal Analysis

Ocean color products are being scrutinized across a whole range of space and
time scales. The various satellite data records should show the same patterns of
variability, annual cycle (phenology), and trends. The global distribution of
phytoplankton is well known and reproduced by all satellite products, but the
advent of high resolution modeling and remote sensing is shedding new light
on how phytoplankton and physics are related across spatial scales, including
planetary waves [71], mesoscale, and submesoscale [72e74], or internal
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FIGURE 9 Rrs anomaly analysis for a global clear water region.
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waves [75]. The seasonal cycle of phytoplankton is the most prominent signal
in many ocean regions and phytoplankton phenology has recently been
actively investigated [76]. Variations in Chla distributions have been studied at
other time scales, describing intraseasonal signals such the MaddeneJulian
oscillation [77], tropical interannual variations like El Niño [78] or climate
signals with longer time scales [79].

Temporal signals of field observations and satellite data can be compared
without the need for the stringent timeliness required by match-up analyses.
Some studies have checked the main temporal patterns displayed by satellite
products against in situ time series, for instance comparing their respective
annual cycle of Chla [80], or looking at trends in radiometric data (e.g., at
AAOT [32]) or derived products at time-series stations like the Bermuda
Atlantic Time series Study or the Hawaii Ocean Time series [81]. Considering
the requirements for extensive in situ data sets needed for such analyses, they
have been very few so far.

Notwithstanding the potential offered by satellite data for spatial and
temporal analyses, how the different characteristics of each satellite product
(in terms of spatial resolution, levels and structure of variance, or noise) affect
analyses of climate signals or model simulations relying on data assimilation
has been largely unexplored. These differences will have to be properly in-
tegrated into the long-term analysis of the biogeochemical responses of marine
ecosystems to climate forcing. However, some studies have analyzed how
different satellite missions represent the temporal evolution of a satellite
derived product (Chla or optical properties) for specific regions [67,80,82].
Djavidnia et al. [83] have compared Chla time series averaged over the
Longhurst [84] provinces, as obtained from SeaWiFS, MODIS, and MERIS.
Taylor plots are useful in that regard, illustrating on the same plot the corre-
lation between two signals, their standard deviations, and their unbiased RMS
difference. From the updated results for SeaWiFS and MODIS seen on
Figure 10, it appears that the correlation coefficients between monthly series
are all higher than 0.8, while the variance of the MODIS time series can be
lower or higher than that of SeaWiFS.

As soon as the SeaWiFS mission lifetime exceeded 5 years, investigations
started studying possible trends associated with its Chla series [85,86]. The
validity of these analyses was supported by the activities that ensured the
characterization and stability of the instrument calibration [87]. Even if similar
calibration strategies are followed for the main ocean color missions, it still
appears worthwhile to compare long-term trends obtained from different
missions to check that they provide the same view of interannual changes
taking place in the oceans. Generally, this is unlikely to be an easy task since it
requires overlaps between missions long enough for trend analysis. But the
ocean color community has been fortunate to benefit from such cases with the
long records of SeaWiFS, MODIS, and MERIS. For instance, the latter two
missions were contemporaneously in operation for a decade. A trend analysis
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was performed on the MODIS and MERIS Chla data over the period August
2002eJuly 2011 using a nonparametric seasonal Kendall test [79]. Figure 11
illustrates the agreement between the trend fields. The use of a contingency
matrix allows the quantification of this agreement by computing the per-
centage of the ocean with similar or divergent behaviors (trend slopes of the
same/opposite signs, significance levels,.). For instance, 20% of the ocean is
found to have a statistically significant trend (p < 0.05) of the same sign for
both series (11% with a positive slope, 9% with a negative slope), while there
is virtually no area with a statistically significant trend of opposite sign
(0.005%).

Analyses checking the consistency of ocean color time series in terms of
spatial distributions, phenology or trends should be seen as integral parts of an
assessment strategy applied to climate data records.

(a) (b)

(c) (d)

FIGURE 10 Taylor plots comparing SeaWiFS (taken as a reference) and MODIS-Aqua Chla

time series averaged over biogeographic provinces associated with (a) midlatitudes, (b) subtropical

regions, (c) marginal seas, and (d) shelves and upwelling regions. See Longhurst [84] for province

acronyms.
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4. CONCLUSIONS

In the assessment of satellite products, a recurrent question is that of ranking:
is a given product better than another, either because processed with different
algorithms or associated with another sensor? A still larger question is: should
it be deemed acceptable for climate research? Validation statistics might
promote one mission for one specific product (e.g., Chla but not IOPs), using
one field data set but not another, for some wavelengths only or for the spectral
shape of Rrs. One product might also be preferred for its extensive data
coverage. Ultimately, the choice of a particular product is intimately linked
with the science question being addressed, and its assessment needs to be
commensurate with the intended application. The stringent requirements
associated with climate research call for a comprehensive approach including
validation with field data, uncertainty analyses, and consistency checks like
comparison between mission-specific products and time series analyses. In
that regard, significant mission overlaps (at least 1 year) are an absolute pre-
requisite for such a strategy, besides the fact that gaps in the data records
would seriously challenge our ability to use the ocean color record to detect
climate signals [88].

In 1983, Gordon et al. [89] could use three spectra of water leaving radi-
ance determined from ship-based observations to assess the atmospheric
correction applied to CZCS data. Although this chapter illustrates the
considerable progress made in data collection since then, the relative scarcity
of high-quality Rrs measurements remains a limiting factor for assessing
radiometric satellite ocean color products. The oceanographic community
should invest in comprehensive measurement programs for validation pur-
poses, and in the development of new technological or methodological ap-
proaches. The development of a network of automated above-water
radiometers [20] represents a major progress for coastal waters. Placing bio-
optical instruments onto floats [90] is also a promising avenue to increase
frequency and coverage. Hyperspectral measurements are also desirable, both

FIGURE 11 Linear trend for Chla (in % per annum) found over the period August 2002 to July

2011 for (a) MODIS-Aqua and (b) MERIS.
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to fully accommodate the spectral characteristics specific to each satellite
sensor, and in preparation for advanced spaceborne sensors with hyperspectral
capabilities.

This chapter has also discussed approaches based on the use of models or
intercomparison techniques that can profitably complement the in situ vali-
dation statistics. Their major contribution should be to allow an extension of
validation results to a wider range of geometric and environmental conditions.
A complete framework for error propagation is needed, but it requires a
thorough and accurate characterization of the uncertainties associated with the
radiance signal at top-of-atmosphere, as well as a detailed understanding of the
propagation of errors through the atmospheric correction algorithm, the un-
certainties associated with algorithm assumptions, and the contributions of all
other ancillary inputs (e.g., meteorological conditions and atmospheric gas
contributions) to the total uncertainty budget. The approaches mentioned here
do not form an exhaustive list. More holistic modeling environments could be
devised to support product assessment, for instance to exclude some conditions
or ascertain their probability. For instance, high Chla concentrations close to
river outlets are unlikely in winter, and their presence in satellite products is
suspect. Ecosystem models can contribute to assess and improve satellite
products, and vice-versa.

A maturity model has been proposed to assess the completeness of climate
data records (CDR) [91]. This matrix model contemplates six levels of
maturity for all aspects of a data set. We could argue that the ocean color
products can pretend to the levels 5 or 6, synonymous of a “full operational
capability”, for aspects like software, documentation, metadata, public access,
and utility. Understandably, product validation is lagging behind, qualifying
for levels 3 or 4, “uncertainty estimated for select locations/times” or “un-
certainty estimated over widely distributed times/locations by multiple in-
vestigators; differences understood”. Level 5 would entail the knowledge of
“consistent uncertainties estimated over most environmental conditions by
multiple investigators”. Progress has been made in that direction but needs to
be consolidated into an operational context to allow a fully informed use of
ocean color products in climate research.
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H. Krasemann, Z.-P. Lee, S. Maritorena, F. Mélin, M. Peters, T. Platt, P. Regner, T. Smyth,

F. Steinmetz, J. Swinton, P.J. Werdell, G.N. White, The Ocean Colour Climate Change

Initiative. III. A round-robin comparison on in-water bio-optical algorithms, Remote Sens.

Environ. (2014), http://dx.doi.org/10.1016/j.rse.2013.09.016.

[7] D. Mueller, H. Krasemann, R. Brewin, C. Brockmann, P.-Y. Deschamps, R. Doerffer, N.

Fomferra, B.A. Franz, M. Grant, S. Groom, F. Mélin, T. Platt, P. Regner, S. Sathyendranath,
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D. Vandemark, H. Feng, K. Rutledge, G. Schuster, A. Al Mandoos, A network for stan-

dardized ocean color validation measurements, EOS Trans. AGU 87 (2006) 293e297.

[21] M. Shimada, H. Oaku, Y. Mitomi, H. Murakami, A. Mukaida, Y. Nakamura, J. Ishisaka,

H. Kawamura, T. Tanaka, M. Kishino, H. Fukushima, Calibration and validation of the

ocean color version-3 product from AEOS OCTS, J. Oceanogr. 54 (1998) 401e416.

[22] S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang,

S. Ahmed, Evaluation of the VIIRS ocean color monitoring performance in coastal regions,

Remote Sens. Environ. 139 (2013) 398e414.

[23] N. Lamquin, C. Mazeran, D. Doxaran, J.-H. Ryu, Y.-J. Park, Assessment of GOCI radio-

metric products using MERIS, MODIS and field measurements, Ocean Sci. J. 47 (2012)

287e311.

[24] M. Wang, J.H. Ahn, L. Jiang, W. Shi, S. Son, Y.-J. Park, J.-H. Ryu, Ocean color products from

the Korean Geostationary Ocean Color Imager (GOCI), Opt. Exp. 21 (2013) 3835e3849.

[25] T. Cui, J. Zhang, J. Tang, S. Sathyendranath, S. Groom, Y. Ma, W. Zhao, Q. Song,

Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the

East China Coast (in the Yellow Sea and East China Sea), ISPRS J. Photogram. Remote

Sens. 87 (2014) 137e151.

[26] T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, Atmospheric correction al-

gorithm for MERIS above case-2 waters, Int. J. Remote Sens. 28 (2007) 1469e1486.

[27] M. Wang, S.-H. Son, W. Shi, Evaluation of MODIS SWIR and NIR-SWIR atmospheric

correction algorithms using SeaBASS data, Remote Sens. Environ. 113 (2009) 635e644.

[28] M. Szeto, P.J. Werdell, T.S. Moore, J.W. Campbell, Are the world’s oceans optically

different? J. Geophys. Res. 116 (2011) C00H4. http://dx.doi.org/10.1029/2011JC007230.

[29] M.J. Sauer, C.S. Roesler, P.J. Werdell, A. Barnard, Under the hood of satellite empirical

chlorophyll-a algorithms: revealing the dependencies of maximum band ratio algorithms on

inherent optical properties, Opt. Exp. 20 (2012) 20920e20933.
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[31] G. Zibordi, F. Mélin, J.-F. Berthon, Intra-annual variations of biases in remote sensing

primary ocean color products at a coastal site, Remote Sens. Environ. 124 (2012) 627e636.
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S. Pinnock, C. Pottier (Eds.), Ocean Color Data Merging, Reports of the International

Ocean-Colour Coordinating Group, No. 5, vol. 65, IOCCG, Dartmouth, Canada, 2007.

[57] D. Antoine, A. Morel, H.R. Gordon, V.F. Banzon, R.H. Evans, Bridging ocean color ob-

servations of the 1980s and 2000s in search of long-term trends, J. Geophys. Res. 110

(2005) C06009. http://dx.doi.org/10.1029/2004JC002620.

[58] A. Morel, S. Maritorena, Bio-optical properties of oceanic waters: a reappraisal, J. Geophys.

Res. 106 (2001) 7163e7180.

[59] A. Morel, Y. Huot, B. Gentili, P.J. Werdell, S.B. Hooker, B.A. Franz, Examining the con-

sistency of products derived from various ocean color sensors in open ocean (Case 1) waters

in the perspective of a multi-sensor approach, Remote Sens. Environ. 111 (2007) 69e88.
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