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Data products retrieved from the inversion of in situ or remotely sensed ocean-
colour data are generally distributed or reported without estimates of their un-
certainties. The accuracy of inversion products such as chlorophyll-a or IOPs
is frequently evaluated by comparison with in situ measurements, but these
analyses are not always sufficient to determine the level of uncertainty of an
ocean-colour product. This is particularly true for remote sensing data where
match-up analyses (McClain et al., 2000; http://seabass.gsfc.nasa.gov/matchup_
results.html) can only be performed for an infinitesimal fraction of a sensor’s
records. Although very useful, these analyses cannot provide reliable estimates
of how ocean-colour uncertainties vary with time and/or space. Moreover, be-
cause the uncertainties of the input data (for example the normalized water-
leaving radiance, LwN) vary in space and time, the uncertainties of the output
products cannot be reported simply as a single global value unless it is intended
to provide general bounds. Some ocean-colour products are also used as input to
other models (for example, to calculate primary production or to assimilate phy-
toplankton carbon into ecosystem models) for which uncertainty budgets cannot
be properly established without knowledge of the uncertainties associated with
the input data. It is thus important that the variations of the uncertainty in
LwN and in the products derived from them are documented in time and space.
This section discusses the various types of uncertainties present in ocean-colour
data or products and emphasizes recent approaches that allow uncertainties of
satellite ocean-colour products to be estimated on a pixel-by-pixel basis.
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3.1 Sources of Uncertainty

3.1.1 Uncertainties in in situ measurements (LwN, Rrs, C , IOP)

In situ data are used for algorithm development and for validation of algorithms
and data products. While in situ measurements are frequently considered as “the
reference” to which other data (e.g. satellite data) are compared, they contain
significant levels of uncertainties caused by various experimental and environ-
mental factors. Calibration, dark signal, data processing, deployment strategy,
sea and sky states all introduce uncertainties in the radiometric measurements
(Siegel et al., 1995; Hooker and Maritorena, 2000; Hooker et al., 2001). Close
compliancy to establish measurement protocols (e.g. Mueller and Austin, 1995
and follow up) along with regular and rigorous calibrations and good character-
ization of instruments are key to the minimization of uncertainties in the in situ
measurements. Measurements of biogeochemical variables have their own set
of difficulties and resulting uncertainties (Mitchell et al., 2000; Van Heukelem et
al., 2002; Claustre et al., 2004). Most of the data sets that are publicly available
(e.g., SeaBASS) do not contain information regarding the estimated uncertain-
ties of the various variables they contain (e.g., the differences between the tripli-
cate chlorophyll measurements and the uncertainties in the radiometer reading,
based on its variability through the sampling period and its calibration history).
It is frequently assumed that the uncertainties of in situ data are small and
in any case much smaller than the uncertainties arising from the natural spa-
tial/temporal variability of a given variable.

Another uncertainty arises from the fact that the match-up field data usually
characterize an area of around 1–10 m while the satellite spatial scale is often
100–1,000 m. This environmental mismatch in scales introduces an uncertainty
that is often hard to quantify. Also, satellite measurements represent a water-
column weighted average (Gordon and Clark, 1980; Sathyendranath and Platt,
1989; Zaneveld et al., 2005a), while in situ measurements usually come from
discrete depths. Therefore, for vertically inhomogeneous waters, uncertainties
arise when the two are compared with each other. Some sampling platforms
such as on-line sampling from steaming vessels, undulating vehicles, gliders,
and autonomous underwater vehicles (AUVs) are likely to be fruitful approaches
in quantifying these uncertainties.

3.1.2 Uncertainties in satellite measurements (LwN)

Various sources of random and systematic error contribute to disagreements be-
tween measured normalized water-leaving radiances and their actual values. Un-
certainties in LwN are introduced through a variety of factors such as pre-launch
characterization of the sensor, atmospheric and bi-directional corrections, and
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uncertainties in the monitoring of the changes in the sensor’s performance. Er-
rors in geo-location, contamination with light emanating from adjacent pixels
or other factors like white caps can also add to this uncertainty. The calibra-
tion/validation activities of each ocean-colour mission are designed to assess
and minimize the magnitude of this uncertainty (and remove any bias). Pre-
launch and on-orbit characterization of the sensors (e.g., measurements of re-
flected Sun and/or Moon light) along with vicarious calibrations (e.g., the MOBY
buoy) and match-up analyses are the major procedures used to quantify uncer-
tainties of normalized water-leaving radiances.

The calibration/validation activities and the reduction of the uncertainties
in the derived LwN should be one of the primary tasks of space agencies pro-
viding the ocean-colour data and much effort must be invested in minimizing
it for various missions. In the remainder of this chapter we will therefore as-
sume the uncertainty in the LwN is known and documented, although at present
uncertainties in atmosphere correction still dominates errors in LwN of coastal
waters.

3.1.3 Uncertainties and assumptions in the functional relationship
that links LwN and IOP and in the inversion procedure used to
derive the products

Uncertainties in the products derived from the inversion of LwN, however, do
not benefit from the same level of effort. In what follows we will address these
uncertainties with reference to the type of algorithm designed to produce them,
distinguishing between empirical and semi-analytical inversion algorithms. The
approaches used in some recent works to provide ocean-colour product uncer-
tainties are also described.

3.1.3.1 Obtaining uncertainties in products based on empirical algorithms

Empirical algorithms are developed from data sets where in situ radiometry and a
to-be-derived product (e.g., chlorophyll-a, POC) have been collected at the same
spot of the ocean and within a narrow period of time. A regression is most
often performed to obtain the ‘best-fit’ function between the two variables and
to define the formulation that relates the two quantities. The type of regression
used to relate two variables is relevant to the uncertainty discussion because
regression methods work under different assumptions about uncertainties in
the data involved. Type-I regressions (Laws, 1997) are the most frequently used
and are based on the assumption that only the dependent variable (i.e. y, the
product) has an uncertainty, while the independent variable (i.e. x, the input
data) is error free. In Type-I regressions, the individual uncertainties in the input
data are not taken into account and it is generally assumed that the relative error
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in the variable is constant. Conversely, Type-II regressions (Press et al., 1992;
Laws, 1997) assume that both variables have uncertainties and are thus better
adapted for ocean colour where substantial uncertainties frequently exist in the
variables involved (e.g., reflectance ratio, chlorophyll).

An empirical algorithm is as good as the data it is based on, and on how
representative the data are of the environment or bio-optical provinces where
the algorithm is to be applied. In situ data sets are often geographically and
seasonally biased due to constraints in the timing and location of oceanic cruises
(Claustre and Maritorena, 2003).

In general, it is crucial that data sets used in the development (or validation)
of an ocean-colour algorithm have complete information about the location and
time at which the data were collected and about their quality (i.e. associated
uncertainties). The geographical and temporal extent of a data set determines
the water types where the algorithm can be applied, whereas uncertainties in
products require information on uncertainties in the input data.

For empirical algorithms, the dispersion of the y-axis data (i.e. the product)
around the “mean” relationship of the resulting algorithm provides, to some
degree, information about the uncertainties that can be expected at any given
x-axis value (i.e. the input data). However, this only represents the uncertainties
associated with the data set used in the regression and cannot be generalized
unless the data set fully encompasses all the natural variability that exists for
the water types included. Ideally, to evaluate the uncertainties of an empirical
algorithm one needs a different data set than that with which the algorithm was
developed; the statistics of the differences between the inverted products and
the measured products in this independent data set can then be used to evaluate
the uncertainties in the product. Additionally, an uncertainty propagation anal-
ysis to evaluate the effect of the uncertainties in the LwN on the output has to
be carried out to establish whether or not this uncertainty is a significant source
for uncertainty in the product (e.g., to what extent a 5% relative uncertainty in
LwN at 440 and 555 nm affects the IOPs retrieved).

In the case of neural network (NN) based algorithms, uncertainties should be
determined from a rigorous statistical approach. Aires et al. (2004) provided an
example of such an approach to products derived from remote sensing (other
than ocean colour). They use a Bayesian technique to evaluate the uncertainties
in the NN parameters which are then used to compute the uncertainties in the
outputs.

Another way to determine whether the measured reflectance spectrum is
within the domain of the bio-optical models used to simulate reflectance spec-
tra, which in turn were used to train a neural network, has been developed for the
Medium Resolution Imaging Spectrometer (MERIS) (Doerffer and Schiller, 2000;
Krasnopolsky and Schiller, 2003). For this purpose one network is trained to de-
termine concentrations from the eight MERIS bands together with the solar and
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viewing zenith angles and the azimuth difference between viewing and sun di-
rection (see Chapter 6). A second, forward, network is trained with the same data
set, which takes the derived concentrations as input and produces reflectances.
The deviation, calculated as the Chi2 (Sokal and Rohlf, 1981), over all eight bands
between the measured and the computed spectrum, is then used as an indicator
to see if the measured spectrum is within the training range, and thus within the
scope of the algorithm. In the case of the MERIS ground segment, a flag is raised
whenever the Chi2 deviation exceeds a certain threshold. However, the Chi2

value can also be used as an uncertainty measure. Furthermore, a technique has
been developed (Schiller and Doerffer, 2005), which combines the neural net-
works with an optimization procedure, to estimate the uncertainty of a product
on a pixel-by-pixel basis.

3.1.3.2 Obtaining uncertainties in products based on semi-analytical models

Semi-analytical models or algorithms are based on the premise of a known rela-
tionship (derived from the radiative-transfer theory) between LwN (or a function
of it) and IOPs (generally the absorption, a, and the backscattering, bb, coef-
ficients). These models contain some level of empiricism in the way IOPs are
parameterized (i.e. how their variations and spectral shapes are formulated)
and they also use simplified assumptions for some of their components (see
Chapter 1). The inversion of semi-analytical models generally allows the simul-
taneous retrieval of several variables contained in the IOP terms. Like empirical
algorithms, semi-analytical models are affected by uncertainties in LwN but they
are also influenced by uncertainties associated with the chosen relationship be-
tween LwN and IOPs, and uncertainties resulting from the assumptions used in
their formulation.

Sensitivity analyses are frequently used to assess how assumptions used to
describe the component terms of a model affect retrievals (Roesler and Perry,
1995; Hoge and Lyon, 1996; Garver and Siegel, 1997). Although very useful,
this approach does not allow the determination of a product’s uncertainty on a
case-by-case (or pixel-by-pixel) basis, but rather provides a general uncertainty
estimate. To our knowledge, only two methods have recently been used with
ocean-colour data that can estimate the uncertainties of products retrieved by
the inversion of a semi-analytical model on a case-by-case basis. The first one
(Maritorena and Siegel, 2005) is a non-linear adaptation of the calculation of
confidence intervals in linear regressions. Essentially, this method is based on
the projection of the residuals between the observed and reconstructed (from
the inverted variables) LwN in the solution (i.e. retrieved variables) (Bates and
Watts, 1988).

A recent study (Wang et al., 2005) suggests another approach to compute
uncertainties of the retrieved variables. In this approach, each of the variables
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to be retrieved has a predefined set of spectral shapes and the model is inverted
for each of the possible combinations of these spectral shapes resulting in an ex-
tensive set of possible solutions. These results are then filtered to keep only the
“realistic” (e.g., positive) solutions that can closely reproduce the input LwN spec-
trum (within a pre-described difference from the LwN based on the uncertainties
in LwN and the uncertainties in the theoretical relationship between LwN and
IOP). The final value for each inversion product and its associated uncertainty
is then obtained from the statistics (median and percentiles) on the acceptable
solution subset. The key steps in this approach are the choice of the acceptance
criteria for the solutions (e.g., what is the acceptable difference between ob-
served LwN and that reconstructed from retrieved IOP) and the choice of range
in possible shapes for the spectrum of each individual IOP. The two methods
described above do not produce the same kind of uncertainties, and thus they
are not directly comparable. Both approaches have benefits and limitations. For
example, the Maritorena and Siegel (2005) approach always returns a value for
the confidence interval of the retrieved product because the calculations do not
depend on spectral criteria but on the sum of the residuals (weighted by the
spectral uncertainties of the input data, if they are known). On the other end,
this approach does not take into account the uncertainties caused by the model
assumptions. In the Wang et al. (2005) approach, uncertainties in the model and
data are included in the spectral agreement criteria but the inversion may fail to
find any solution that satisfies this criteria. Although it uses an efficient linear
matrix inversion technique (Hoge and Lyon, 1996), the Wang et al. (2005) method
is also more computationally demanding (computational demands increase with
numbers of possible combinations of different shapes of IOPs).

3.2 Summary

While some preliminary uncertainty estimates for ocean-colour products are
available through match-up analyses, uncertainties are generally not provided
on a per data point basis. This has caused many users to use ocean-colour prod-
ucts as a qualitative descriptor of patterns rather than a quantitative variable.
Others use these products in biogeochemical models (e.g., computing primary
productivity) without being able to propagate uncertainties.

For some ocean-colour missions, such as for MERIS, a sophisticated flagging
system has been developed. It computes, on a pixel-by-pixel basis, indicators for
the reliability of a product by regarding different possible error sources includ-
ing sun glint, failure in the atmospheric correction, high turbidity in the water,
etc. A flag for each possible problem is raised if the uncertainty value exceeds a
certain threshold. By this method, the user gets a warning and has to decide if
he can accept this pixel for further computations.
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We have reviewed briefly some of the uncertainties present in ocean-colour
data, and have presented different approaches to establish uncertainties in prod-
ucts of ocean-colour remote sensing for either empirical or semi-analytical al-
gorithms. The procedures described above are not complicated and their full
application benefits from the knowledge of uncertainties in the input data. Use
of such approaches will help the ocean-colour community establish quantitative
confidence in the remote-sensing products.


