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Abstract We present a model, referred to as Generalized Stacked-Constraints Model (GSCM), for parti-
tioning the total light absorption coefficient of natural water (with pure-water contribution subtracted),
anw(k), into phytoplankton, aph(k), nonalgal particulate, ad(k), and CDOM, ag(k), components. The formula-
tion of the model is based on the so-called stacked-constraints approach, which utilizes a number of
inequality constraints that must be satisfied simultaneously by the model outputs of component absorption
coefficients. A major advancement is that GSCM provides a capability to separate the ad(k) and ag(k) coeffi-
cients from each other using only weakly restrictive assumptions about the component absorption coeffi-
cients. In contrast to the common assumption of exponential spectral shape of ad(k) and ag(k) in previous
models, in our model these two coefficients are parameterized in terms of several distinct spectral shapes.
These shapes are determined from field data collected in the Chesapeake Bay with an ultimate goal to
adequately account for the actual variability in spectral shapes of ad(k) and ag(k) in the study area. Another
advancement of this model lies in its capability to account for potentially nonnegligible magnitude of ad(k)
in the near-infrared spectral region. Evaluation of model performance demonstrates good agreement with
measurements in the Chesapeake Bay. For example, the median ratio of the model-derived to measured
ad(k), ag(k), and aph(k) at 443 nm is 0.913, 1.064, and 1.056, respectively. Whereas our model in its present
form can be a powerful tool for regional studies in the Chesapeake Bay, the overall approach is readily
adaptable to other regions or bio-optical water types.

1. Introduction

Suspended and dissolved constituents in natural waters such as phytoplankton, detritus, mineral particles,
and colored dissolved organic matter (CDOM) affect the status and functioning of aquatic ecosystems. The
ability to accurately quantify the presence and amounts of these materials in water is critical for numerous
science questions and applications, such as in the area of aquatic ecology and biogeochemistry [e.g., Fal-
kowski et al., 1998; Moore et al., 2004; Coble, 2007], and monitoring of water quality [e.g., Hu et al., 2004;
Schaeffer et al., 2012]. Optical measurements that can be taken from in situ, airborne, or satellite platforms
provide an efficient tool for monitoring and characterizing major categories of water constituents, with an
important capability for providing information over extended temporal and spatial scales. In particular, the
reflectance of a water body determined from in-water, airborne, or satellite radiometric measurements car-
ries information about the inherent optical properties (IOPs) of water such as the total spectral light absorp-
tion, a(k), and backscattering, bb(k), coefficients, where k denotes the wavelength of light in vacuum. The
total absorption coefficient (or equivalently the total nonwater absorption coefficient, anw(k) 5 a(k) 2 aw(k)
where aw(k) is the known absorption coefficient of pure water) can in turn be partitioned into phytoplank-
ton and nonphytoplankton components [e.g., Roesler et al., 1989; Lee et al., 2002; Ciotti and Bricaud, 2006;
Zheng and Stramski, 2013a].

One major challenge for partitioning the total absorption coefficient a(k) [or equivalently anw(k)] into com-
ponent contributions is to separate the nonalgal particulate absorption, ad(k), and CDOM absorption, ag(k),
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coefficients from one another. The main cause of the difficulty in separating ad(k) and ag(k) is related to the
similarity of spectral shapes of these two coefficients, which are typically approximated by the exponential
function of light wavelength [e.g., Babin et al., 2003]. As a result, the existing models for partitioning a(k)
typically yield the phytoplankton absorption coefficient, aph(k), and the combined nonphytoplankton
absorption coefficient, adg(k) 5 ad(k) 1 ag(k) [Roesler et al., 1989; Lee et al., 2002; Ciotti and Bricaud, 2006;
Zheng and Stramski, 2013a]. There have also been a few attempts to derive separate contributions of ad(k)
and ag(k) from partitioning of a(k) [Gallegos and Neale, 2002; Schofield et al., 2004; Lin et al., 2013]. These
models have, however, several significant limitations, most notably highly restrictive assumptions about
model outputs of phytoplankton and nonphytoplankton absorption coefficients. For example, for aph(k) the
assumptions involve a single spectral shape [Gallegos and Neale, 2002] or a linear combination of a small
number of predefined spectral shapes [Schofield et al., 2004].

In the most recent model of Lin et al. [2013], aph(k) is parameterized with an empirical quadratic function of
aph(k0) on the basis of a large set of field data, where k0 is a reference light wavelength chosen at 489 nm.
This parameterization seriously limits the variation in the spectral shape of model-derived aph(k). For exam-
ple, for the observed range of aph(k0) values (�1 m21) in the large data set, the blue-to-red spectral ratio of
phytoplankton absorption, aph(443):aph(670), is allowed to vary only between about 1.72 and 1.83. In this
model, the total particulate absorption coefficient, ap(k), is similarly parameterized in terms of empirical
quadratic function involving the magnitude of the coefficient at a reference wavelength. In addition, each
individual spectrum of ad(k) and ag(k) is described in terms of exponential function of k with a single slope
value (Sd and Sg, respectively) within a large spectral range, albeit variations in these slope parameters are
allowed on a case-by-case basis (these assumptions are similar to those used by Schofield et al. [2004]). Such
parameterization with a single slope value fails to account for potential changes in the slope as a function
of wavelength within a given spectrum [e.g., Loiselle et al., 2009]. Another potential weakness of the model
by Lin et al. [2013] is that the closure described by the equation ap(k) 5 aph(k) 1 ad(k) does not appear to
be necessarily satisfied because two sets of solutions for aph(k) and ad(k) are derived by the model, which
are not necessarily identical. Also, whereas these investigators report the root-mean-square errors ranging
generally from about 10% to 40% for model-derived aph(k), ad(k), and ag(k) based on global and regional
field data sets, no systematic errors are reported. However, the graphical representation of model results
indicates significant bias in aph(k) and ad(k).

The limitations of the existing partitioning models adversely affect their performance and emphasize the
need for a less restrictive and more general approach for partitioning the absorption coefficient into phyto-
plankton, nonalgal particulate, and CDOM components. This level of discrimination in turn provides more
quantitative information for both research and applied uses, particularly in the fields of marine biogeo-
chemistry, water quality, and broader coastal resource management. In this paper, we describe and validate
such an approach for partitioning anw(k) into aph(k), ad(k), and ag(k). The main prerequisite for developing
such an improved partitioning model is to relax restrictive assumptions about the spectral shapes of model
outputs of aph(k), ad(k), and ag(k). This is because it is critical for the model to adequately account for large
variations in the spectral shape of aph(k) which can be caused by changes in phytoplankton community
composition and acclimation to environmental conditions [e.g., Geider et al., 1998; Stramski et al., 2001;
Babin et al., 2003]. In addition, variations in the spectral shape of ad(k) are possible, which can depart signifi-
cantly from a simple exponential function of light wavelength and exhibit nonzero magnitude in the near-
infrared (NIR), especially when the particle assemblage includes absorbing minerals [e.g., Iturriaga and Sie-
gel, 1989; Babin and Stramski, 2004; Bowers and Binding, 2006; Stramski et al., 2007]. Two partitioning models
have been developed recently on the basis of the so-called stacked-constraints approach that is able to
account for large variability in the spectral shapes of model outputs of component absorption coefficients
[Zheng and Stramski, 2013a, 2013b]. One of these models partitions anw(k) into aph(k) and adg(k) [Zheng and
Stramski, 2013a] and the other partitions ap(k) into aph(k) and ad(k) [Zheng and Stramski, 2013b]. A key com-
mon feature of these models is that a set of appropriately defined inequality constraints is used to relax the
restrictive assumptions about the component absorption coefficients and to solve the partitioning problem
with greatly improved accuracy. The validation based on a large set of field data demonstrated good per-
formance of both models. We refer to this type of model as the stacked-constraints model (SCM) and in this
paper we extend this approach to the development of a model for partitioning anw(k) into the three sepa-
rate components of aph(k), ad(k), and ag(k).
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As a proof-of-concept study to demonstrate the feasibility of partitioning anw(k) into aph(k), ad(k), and ag(k),
we selected a coastal region of significant socioeconomic importance, namely the Chesapeake Bay which is
the largest estuary in the United States (U.S.). Its watershed comprises urbanized, agricultural, forested, and
mixed-use regions within several highly populated states (e.g., Maryland, Virginia, Pennsylvania, and Wash-
ington, D.C.). The bay is routinely monitored and studied, meaning a wealth of supporting in situ measure-
ments is available.

Coastal, estuarine, and inland waters are optically more complex than open ocean waters, imposing addi-
tional challenges for deriving information about different water constituents from measurements of bulk
optical properties. The nonalgal particulate and CDOM constituents of water do not typically covary with
phytoplankton and the spectral shapes of light absorption coefficients of these components are usually
highly variable in coastal and inland aquatic environments owing to significant terrigenous as well as
anthropogenic inputs to local receiving waters. Despite these complexities, the selection of an optically
complex coastal environment for our study can offer specific advantages for the purpose of separating
ad(k) and ag(k) from one another. This is because the presence of mineral particles in such waters can pro-
duce distinct spectral features or significant departures from an exponential spectral shape of ad(k). These
features can aid in distinguishing the ad(k) spectrum from the ag(k) spectrum that follows the exponential
shape more closely.

Using a large set of measurements of component absorption coefficients from the Chesapeake Bay, we
demonstrate and validate a partitioning model based on the stacked-constraints approach that involves
only very weakly restrictive assumptions with respect to actual variability of absorption properties within
the study area. Although this is a case study with a specific regional focus, the approach presented for the
partitioning model can be adapted to other regions or bio-optical water types. Thus, this capability can pro-
vide an improved basis for pursuing and supporting a variety of scientific and applied-oriented problems in
various aquatic environments on the basis of optical measurements from both in situ and remote-sensing
platforms.

2. Field Data of Absorption Coefficients

To develop the partitioning model, field data of absorption coefficients are used to: (i) characterize
spectral shapes of absorption coefficients, (ii) determine the inequality constraints, and (iii) evaluate the
performance of the model. For these purposes, we selected four sets of absorption data collected at
near-surface depths (0–3 m) in the Chesapeake Bay. Our selection is limited to near-surface data to
ensure the suitability of our model to remote-sensing applications. Measured variables in the selected
data sets include the spectral absorption coefficients of nonalgal particles ad(k) (i.e., depigmented par-
ticulate component), CDOM ag(k), and phytoplankton aph(k). These coefficients were measured at high
spectral resolution (1 or 2 nm) using methods summarized below in section 2.1. To ensure uniform
spectral resolution of 1 nm for all data, linear interpolation was applied to data with original spectral
resolution of 2 nm.

The entire data set includes measurements taken at 451 stations within the Chesapeake Bay (Figure 1). The
data were collected as part of four projects including the Land Margin Ecosystem Response—Trophic Inter-
actions in Estuarine Systems (LMER-TIES, 1996–2000) [Harding and Magnuson, 2003], Bio-complexity (BIO-
COMP, 2001–2004), Atlantic Coast Estuaries—Indicators Consortium (ACE-INC, 2002–2003) [Harding et al.,
2005], and GEO-stationary Coastal and Air Pollution Events (GEO-CAPE) Chesapeake Bay oceanographic
campaign in July 2011 [Le et al., 2013].

2.1. Measurements and Data Processing
Methods to obtain the data of absorption coefficients are consistent with the protocols described by Har-
ding and Magnuson [2003] and Harding et al. [2005] for the LMER-TIES, BIOCOMP, and ACE-INC data sets,
and by Mannino et al. [2008] and Le et al. [2013] for the GEO-CAPE data set. Here we provide a brief sum-
mary of the methods. Spectra of total particulate absorption coefficient, ap(k), were determined with a
quantitative filter pad method by spectrophotometric measurements of the transmittance of light through
a GF/F filter containing particles, i.e., T-technique [e.g., Mitchell, 1990; Mitchell et al., 2002]. Spectra of nonal-
gal particulate absorption, ad(k), were measured within the same experimental setup as for ap(k) after
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subjecting the pigments within the particles retained
on the filter to hot methanol extraction [Kishino
et al., 1985]. The pathlength amplification effect was
corrected with an average of two formulas from Bri-
caud and Stramski [1990] and Nelson and Robertson
[1993] for the GEO-CAPE data and a formula deter-
mined for phytoplankton cultures for the remaining
data [Harding et al., 2005]. Spectra of CDOM absorp-
tion coefficient, ag(k), were measured in a 10 cm
quartz cuvette with a laboratory spectrophotometer
using a methodology described by Mitchell et al.
[2000, 2003]. The absorption coefficients of ap(k),
ad(k), and ag(k) were ‘‘null-point’’ corrected [e.g.,
Mitchell et al., 2002] so that the magnitude of all
spectra in the NIR spectral region (690–710 nm for
the GEO-CAPE data set and 720–780 nm for other
data sets) is zero. This correction is commonly used
because the original measurements with the filter
pad method in transmittance configuration are
affected by scattering error that can be significant
compared with true absorption in the NIR.

After determining the ap(k), ad(k), and ag(k) coeffi-
cients, the total nonwater absorption coefficient,
anw(k), was calculated as ap(k) 1 ag(k). The phyto-
plankton absorption coefficient, aph(k), was calcu-
lated as ap(k) – ad(k). The total nonphytoplankton
absorption coefficient, adg(k), was calculated as
ad(k) 1 ag(k).

2.2. Data Quality Control
The absorption data from every station within the
original data sets were subject to quality screening
to ensure the use of high-quality data in the devel-
opment of the model and its subsequent evaluation.

This screening was conducted for each individual measurement to identify quality issues. All absorption
data from the GEO-CAPE data set passed our quality screening. For the LMER-TIES, ACE-INC, and BIOCOMP
data sets, a portion of these data was rejected because of issues described below.

For the aph(k) and ad(k) data, the rejection was mainly associated with spectral shapes that were deemed to
be unreasonable. Specifically, we rejected from the analysis the aph(k) spectra that exhibited higher magni-
tude in the red absorption maximum than the blue maximum, because such feature violates typical spectral
behavior of phytoplankton pigment absorption [e.g., Bidigare et al., 1990; Bricaud et al., 1999]. In such cases,
the data of ad(k) were also excluded because the erroneous spectral shape of aph(k) also implies question-
able measurement of ad(k). Another scenario under which the aph(k) data were rejected is when ap(k) was
so strongly dominated by ad(k) that the magnitude and spectral shape of aph(k) was very sensitive to noise
in the measured ad(k). In these cases, however, the ad(k) data for the same sample could still be considered
valid if no other issues were found in the ad(k) spectrum.

The data quality of ad(k) spectrum was considered unacceptable if the magnitude of ad(k) was zero at wave-
lengths shorter than 650 nm with clear discontinuity between zero and nonzero values. Such a discontinuous
feature was possibly caused by unaccounted shift in the baseline associated with the determination of ad(k)
spectrum. Note that for such cases, the aph(k) data could still be acceptable because the ap(k) is subject to the
same baseline and a possible shift issue was canceled out after the subtraction of ad(k) from ap(k).

For the ag(k) data in the LMER-TIES, ACE-INC, and BIOCOMP data sets, the application of exponential fits to
the original data was found necessary to remove small-scale irregularities in the spectral curves associated
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Figure 1. Sampling locations for collecting field data of aph(k),
ad(k), and ag(k) in the Chesapeake Bay. The areas in white repre-
sent water bodies. Land is shown in gray. Some samples were
collected in the tributaries of the bay including the Patuxent,
Choptank, and Potomac Rivers.
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with measurement noise. Data from certain spectral regions were excluded from the fitting procedure. For
example, data in the spectral range 484–488 nm were always excluded because an apparent instrument
artifact (i.e., a positive or negative spike) in the ag(k) spectrum was frequently observed at or near these
wavelengths, likely caused by instrument problems. In addition, large fluctuations in ag(k) signal were occa-
sionally observed between 570 and 590 nm and the selection or rejection of data within this spectral region
was made on a case-by-case basis. Final fitted values of ag(k) were obtained by fitting the original data at
three separate spectral ranges and then matching the three fitted curves together. These ranges were typi-
cally 380–470, 430–520, and 490–560 nm. Multiple exponential functions as opposed to one single function
were adopted for the fitting because one exponential function was insufficient to fit the original data exhib-
iting spectral variation in the exponential slope of the measured ag(k). When noise level in the ag(k) data
was too high to obtain a robust fit, the entire spectrum was rejected.

After the process of quality control, we assembled a final data set consisting of 260 spectra of aph(k), 207
spectra of ad(k), and 447 spectra of ag(k). These data were used to characterize spectral shapes of ad(k) and
ag(k) as well as to determine inequality constraints in the study area as described in detail below. Within
this final data set, the ad(k), ag(k), and aph(k) coefficients vary by 1 order of magnitude. For example, at
k 5 443 nm, the range of 1st–99th percentiles for ad, ag, and aph is 0.18–3.18, 0.20–3.97, and 0.09–1.28 m21,
respectively. We also note that the final data set contains a subset of 90 stations where valid measurements
of ad(k), ag(k), and aph(k) (i.e., the measurements that passed screening of quality control) are concurrently
available. This subset of data was used to evaluate the performance of our model. Within this subset, the
contributions of ad(k), ag(k), and aph(k) to total nonwater absorption anw(k) are relatively balanced in the
short-wavelength portion of the visible spectrum, where magnitudes of these coefficients are generally the
highest. For example, the 1st–99th percentiles for the ratios ad(443):anw(443), ag(443):anw(443), and
aph(443):anw(443) are 0.23–0.51, 0.18–0.51, and 0.23–0.40, respectively, with no single absorption compo-
nent exhibiting strong dominance over the other two components.

3. Development of the Stacked-Constraints Model for the Chesapeake Bay

The underlying goal of research presented in this study is to develop a model for partitioning the total non-
water absorption coefficient anw(k), which satisfies three main requirements. First, the model is to partition
anw(k) into phytoplankton aph(k), nonalgal particulate ad(k), and CDOM ag(k) components, thus including
an important capability to discriminate between ad(k) and ag(k) which is challenging as the spectral shapes
of these coefficients are usually similar. Second, the partitioning problem can be solved with the sole input
of anw(k) so that the model can be applied to data obtained from a wide range of in situ and remote-
sensing platforms. Finally, the model shall impose no restrictive assumptions upon the spectral shapes of
model-derived ad(k), ag(k), and aph(k) to ensure that these optical properties are allowed to vary to the
same extent as observed in natural aquatic environments.

This model development effort is essentially a proof-of-concept case study focused on a well-studied and
important coastal environment, the Chesapeake Bay. The data collected during historical campaigns (see
section 2) are used for model development and evaluation. One essential component of the analysis of field
data conducted in this study was a creation of library of representative spectral shapes of ad(k), ag(k), and
adg(k) for the Chesapeake Bay (Figure 2). This library was formulated to adequately represent all cases
encountered in the study area using a finite manageable number of spectral shapes. It serves as a prerequi-
site to relax the commonly used assumption in the past studies about the exponential spectral shapes of
ad(k) and ag(k) coefficients. Another important component of the analysis of field data aimed at determin-
ing inequality constraints. These constraints define the range of variations associated with spectral shapes
of absorption coefficients (Table 1) and are considered only weakly restrictive because the upper and lower
boundaries of each constraint were selected typically as extreme values within the range of a given con-
straint parameter as observed in the study area. The general concept of the determinations and use of
inequality constraints in the absorption partitioning models was described in Zheng and Stramski [2013a,
2013b] and we follow this concept to develop a new partitioning model in this study.

The overall framework of a new model is similar to the original stacked-constraints model (SCM) [Zheng and
Stramski, 2013a] although there are a few substantial differences. The original SCM partitions anw(k) into
adg(k) and aph(k) with the assumption that the spectral shape of adg(k) can be described with an
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exponential function of wavelength. This assumption, albeit weakly restrictive for the open ocean, can fail
in optically more complex waters such as coastal regions rich in absorbing mineral particles or CDOM origi-
nating from various sources. In such waters, the spectral shapes of ad(k) and ag(k) can often depart signifi-
cantly from a single exponential function which is normally applied over a broad spectral region from near
ultraviolet to near infrared [e.g., Tassan and Ferrari, 2003; Babin and Stramski, 2004; Stramski et al., 2007; Loi-
selle et al., 2009]. In the present study, the library of spectral shapes derived from field data is incorporated
into the stacked-constraints approach, which enables the relaxation of the exponential assumption for
adg(k) as well as the discrimination between ad(k) and ag(k). The use of the library generalized the stacked-
constraints approach without the need to assume any functional shape for adg(k). This is yet another major
difference between the present model and the original SCM, in which the set of equations referred to as a
modified Bricaud and Stramski [1990] algorithm is used to solve for the magnitude and slope of the adg(k)
spectrum. In the present model, a slope parameter for adg(k) is no longer involved but instead the adg(k)
spectrum is described via the library of spectral shapes.

Hereafter we refer to the model developed in this study to as the general stacked-constraints model, GSCM.
The flowchart diagram of GSCM is depicted in Figure 2. The GSCM requires input data of total nonwater
absorption coefficient, anw(k), at a minimum of four wavelengths around 412, 443, 490, and 555 nm. These

Figure 2. Flowchart of the Generalized Stacked-Constraints Model (GSCM) for partitioning the total light absorption coefficient of natural
water (with pure-water contribution subtracted), anw(k), into phytoplankton, aph(k), nonalgal particulate, ad(k), and CDOM, ag(k), compo-
nents. Steps 1 and 2 derive speculative solutions, Step 3 identifies feasible solutions among the speculative solutions, and Step 4 deter-
mines final model outputs including the optimal solutions for the component absorption coefficients and 10th–90th percentile ranges of
feasible solutions for these coefficients. The green and blue lines correspond to the matrix dimensions defined by the number of phyto-
plankton absorption band ratios, x and y, respectively. The red lines correspond to the matrix dimension defined by the number of âdg(k)
spectra. See section 3 for detailed description of the model.
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wavelengths are selected because they coincide closely with the spectral bands available on the past and
current satellite ocean color sensors. The spectral resolution of output aph(k) is the same as that for the
model input of anw(k). The spectral resolution of model-derived ad(k) and ag(k) can be as high as 1 nm
within the spectral range of 400–750 nm because a number of representative spectral shapes of these coef-
ficients is predefined using hyperspectral field data within that spectral range. Details of the various compo-
nents of GSCM are described in subsequent sections.

3.1. Library of Spectral Shapes of ad(k), ag(k), and adg(k)
The first important task in the development of GSCM is the analysis of large set of field data of ad(k) and ag(k) with
a purpose of defining a relatively small manageable number of absorption shapes which can be subsequently
used to adequately characterize all types of nonalgal particulate and CDOM spectra encountered in the study
area. To accomplish this task, we used the so-called hierarchical cluster analysis (HCA) [e.g., Anderberg, 1973],
which essentially compares the similarity in the shape among all spectra in the field data and assembles the sets
of similar spectra within separate clusters. We applied this approach to the field data obtained in the Chesapeake
Bay comprising 207 spectra of ad(k) and 447 spectra of ag(k) (see section 2). Only data within the spectral range of
400–750 nm were included in this analysis. The shorter wavelengths were excluded because the pathlength
amplification effect involved in the ap(k) and ad(k) measurements is not well characterized in the UV.

To facilitate a comparative analysis of spectral shapes, we normalized the spectral values within each
absorption spectrum of ad(k) and ag(k) by the sum of all spectral values between 400 and 750 nm so that
the integral of each normalized spectrum, hereafter denoted by âd(k) and âg(k), is equal to unity:

âdðkÞ5adðkÞ
,X750

k5400

adðkÞ (1)

âgðkÞ5agðkÞ
,X750

k5400

agðkÞ (2)

The normalized spectra, âd(k) and âg(k), were categorized into 7 and 5 clusters, respectively, using the HCA.
The number of clusters was determined to achieve the lowest similarity between neighboring clusters rela-
tive to the similarity among individual spectra within each cluster. The similarity is defined to be inversely
proportional to the Euclidean distance between the vectors of normalized absorption spectra, where the
vector is a set of all spectral values within the normalized spectrum. The final spectra of âd(k) and âg(k) rep-
resentative of each cluster were calculated by averaging all spectra within each cluster. As a result a total of
seven âd(k) spectra (Figure 3a) and five âg(k) spectra (Figure 3b) were defined. The tabulated values of these
spectra are provided in supporting information (Table S1). We consider these basic representative spectra
of âd(k) and âg(k) as proxies that adequately capture the complete variability in the spectral shapes of non-
algal particulate ad(k) and CDOM ag(k) absorption coefficients in the Chesapeake Bay.

Assuming that these basic spectral shapes are generally representative of the true absorption properties of
the Chesapeake Bay waters, we can address the partitioning problem by solving for the magnitudes of

Table 1. Inequality Constraints Used in the Generalized Stacked-Constraints Model (GSCM) for Partitioning the Total Light Absorption
Coefficient of Natural Water (With Pure-Water Contribution Subtracted), anw(k), into Phytoplankton, aph(k), Nonalgal Particulate, ad(k),
and CDOM, ag(k), Components

Constraints Physical Meaning

#1 0.75< aph(412)/aph(443)< 1 The band ratio of phytoplankton absorption characterizing
changes within the short-wavelength portion of the major
absorption maximum in the blue spectral region

#2 0.48< aph(490)/aph(443)< 0.77 Same as above but within the long-wavelength portion
of the blue absorption maximum

#3 0.76< aph(469)/aph(412)< 1.13 The band ratio of phytoplankton absorption involving
both sides of the blue absorption maximum

#4 0.19< aph(555)/aph(490)< 0.50 The band ratio of phytoplankton absorption between
the green and cyan spectral regions

#5 0< ad(750)/ad(443)< 0.3 The band ratio of nonalgal particulate absorption
between the NIR and the blue spectral regions
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ad(k) and ag(k) for each and every
combination of the basic spectral
shapes âd(k) and âg(k), which requires
the consideration of a total of 35 (7 3

5) scenarios. However, there is a com-
plication which is associated with
experimental limitations in the meas-
urements of ad(k). Specifically, all field
data of ad(k) used in this study were
processed with the ‘‘null-point’’ cor-
rection because the measured
absorption signal in the NIR obtained
with the filter-pad T-method was
potentially subject to scattering errors
and/or other artifacts of the method.
As a result, the 7 basic spectra of
âd(k) derived from the field data do
not resolve the potential nonzero
magnitude and variations in the NIR
absorption by nonalgal particles. The
lack of such a capability leads to a
problem for the Chesapeake Bay
because this water body receives sig-
nificant terrigenous input of mineral
particles, which can likely absorb in
the NIR [Tassan and Ferrari, 2003;
Babin and Stramski, 2004; Stramski
et al., 2004, 2007; Tzortziou et al.,
2006; R€ottgers et al., 2014]. Therefore,
it is critical for our model to have the
ability to account for potential NIR
absorption of nonalgal particles, a
feature that is missing in the basic
spectral shapes of âd(k).

To account for unknown magnitude
of ad(k) in the NIR in the present
model, we introduce a variable, B,
which is a spectrally independent off-
set of ad(k). This offset is meant to
represent true absorption of nonalgal
particulate matter in the NIR. Model-
derived ad(k) is calculated by adding
the offset B to all spectral values of

nonalgal particulate absorption derived from the basic âd(k) spectra. Such procedure annuls the ‘‘null-point’’
correction in which a constant value was subtracted from the entire spectrum of ad(k) data that were
obtained from measurements with the filter-pad T-method. The introduction of variable B is accompanied
by undesirable increase in the number of unknowns for solving the partitioning problem. To reduce the
total number of unknowns, we create an intermediate step in model calculations in which the two separate
magnitudes of ad(k) and ag(k) are represented in terms of one scaling parameter, A, which denotes the
magnitude of adg(k). The proportions of ad(k) and ag(k) within adg(k) are represented using an array of nine
discrete weighting factors, i.e., w 5 {0.1, 0.2, . . ., 0.9}. For any given measurement of water sample, the val-
ues of the weighting factors specific to ad(k) and ag(k) are dependent upon each other so that their sum
always equals to 1. The values of 0 and 1 are excluded from candidate weighting factors which results from
the assumption that nonalgal particles and CDOM are always present in water. We also note that the use of

Figure 3. (a) Seven representative normalized absorption spectra of nonalgal par-
ticles âd(k) and (b) five representative normalized absorption spectra of colored dis-
solved organic matter âg(k), which characterize the variability in the spectral shape
of these absorption components in the Chesapeake Bay. These representative spec-
tra are plotted with different colors and each spectrum was normalized by the inte-
gral over the 400–750 nm spectral range. The gray dashed curves shown as a
background for the colored curves were obtained from the original measurements
of nonalgal particulate (207 spectra) and CDOM absorption (447 spectra)
coefficients.
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higher resolution than 0.1 for the discrete weighting factors is in principle possible but was deemed unes-
sential in this study from the standpoint of model performance.

With the addition of the weighting factors, the total number of scenarios for the parameterization of adg(k)
increases from 35 to 315 (7 3 5 3 9) to represent all combinations of various basic spectral shapes of âd(k),
âg(k), and the discrete values of weighting factors. For each scenario, the spectral shape of adg(k) before the
NIR absorption offset B is added, denoted as âdg(k), can be calculated as a linear combination of âd(k) and
âg(k) according to (see also Figure 2):

âdgðkÞk5wr âdðkÞp1ð12wrÞâgðkÞq (3)

where

âdg(k)k kth spectrum of âdg(k), k 5 1, 2, . . ., 315;

âd(k)p pth basic spectrum of âd(k), p 5 1, 2, . . ., 7;

âg(k)q qth basic spectrum of âg(k), q 5 1, 2, . . ., 5;

wr rth element of the array of weighting factors w, r 5 1, 2, . . ., 9.

Each of 315 spectra of âdg(k) corresponds to a unique combination of one basic spectrum of âd(k), one basic
spectrum of âg(k), and one value of weighting factor w. The 315 spectra of âdg(k), 7 spectra of âd(k), and 5
spectra of âg(k) constitute a library of spectral shapes for total nonphytoplankton absorption, nonalgal par-
ticulate absorption, and CDOM absorption, and they are all used in the calculations of the model (Figure 2).

3.2. Inequality Constraints
In addition to determining the spectral shapes of ad(k) and ag(k), the field data from the Chesapeake Bay
are used also to establish a set of inequality constraints which are a key part of our modeling formalism
(Table 1). The constraint variables are defined in terms of band ratios of phytoplankton absorption aph(k)
and nonalgal particulate absorption ad(k) with a purpose to capture specific spectral features of these
absorption coefficients. The constraints #1 and #2 are defined as band ratios of aph(k) describing changes in
phytoplankton absorption on both sides of the major absorption maximum in the blue spectral region. The
constraint #3 ensures that the derived aph(k) assumes reasonable values at both sides of the maximum in
the blue spectral region. The wavelengths of 412 and 469 nm involved in this constraint are located more
or less symmetrically relative to the absorption maximum. We note that in the case when the input data of
anw(k) are not available at 469 nm, the value of model-derived aph(469) can be estimated from interpolation
between the wavelengths of 443 and 490 nm, which are always required to run the model. The constraint
#4 ensures realistic values for the ratio of derived aph(k) at 490 and 555 nm, which implies a reasonable
spectral behavior of aph(k) within the long-wavelength tail of blue absorption maximum. Variability in the
values of constraint variables #1–#4 in the Chesapeake Bay is demonstrated by histograms based on a com-
prehensive set of 260 field measurements of aph(k) (Figure 4). The upper and lower bounds for inequality
constraints #1–#4 were determined as the 1st and 99th percentiles of the histograms, which is consistent
with the approach used in the original SCM [Zheng and Stramski, 2013a].

The constraint #5 ensures that the nonalgal particulate absorption spectrum has a reasonable magnitude in
the NIR relative to the blue spectral region. This constraint is introduced to account for possible significant
absorption by particles in the NIR, which is expected mainly in waters rich in mineral particles [e.g., Tassan
and Ferrari, 2003; Babin and Stramski, 2004; Bowers and Binding, 2006; Stramski et al., 2007; R€ottgers et al.,
2014]. The upper boundary of constraint #5 is determined from this literature because the available field
data from the Chesapeake Bay provide no useful information about the NIR particulate absorption. Tassan
and Ferrari [2003] showed that the ratio of absorbance between 750 and 440 nm may range between 0.04
and 0.31 for marine and freshwater environments. Stramski et al. [2004] showed that the NIR (750 nm) to
blue (400 nm) absorption ratio of Asian dust particles ranges from very low values close to 0 to about 0.1.
Similar ratio between 800 and 400 nm for various mineral-dominated particle assemblages was reported in
the range of 0.032–0.15 [Babin and Stramski, 2004] and 0.025–0.23 [Stramski et al., 2007]. Measurements on
water samples collected in several marine coastal and estuarine regions suggest that the upper limit of the
NIR (750 nm) to blue (400 nm) absorption ratio is about 0.3 [R€ottgers et al., 2014]. On the basis of these data,
a value of 0.3 is here considered as an appropriate upper limit of constraint #5. We note that the derivation
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of ad(k) at 750 nm which is required for constraint #5 does not necessarily require the availability of input
data of anw(k) at 750 nm. This derivation can be accomplished with input of anw(k) provided for a minimum
set of four wavelengths required by our model, i.e., 412, 443, 490, and 555 nm. This is because ad(k) is
derived with high spectral resolution as defined by the representative spectra of âd(k) which were obtained
from hyperspectral absorption measurements.

3.3. Solving for ad(k), ag(k), and aph(k)
Having determined a set of representative spectra of âd(k), âg(k), and âdg(k), as well as a set of inequality
constraints, our model is equipped with information necessary to solve for ad(k), ag(k), and aph(k). The solu-
tions of the model can be obtained with input data of anw(k) provided for a minimum set of four basic
wavelengths in the blue and green spectral regions, i.e., 412, 443, 490, and 555 nm. In this particular case of
spectrally limited input data our model finds solutions of aph(k) at these four input wavelengths, but the sol-
utions of ad(k) and ag(k) are obtained at high spectral resolution consistent with the resolution of prede-
fined representative spectra of âd(k) and âg(k). If input data of anw(k) are available at higher spectral
resolution, the solutions of aph(k) are also found with correspondingly high spectral resolution. The model
operates via several steps starting with calculations of many speculative solutions, followed by the determi-
nations of a smaller set of feasible solutions, and finally the identification of optimal solutions. These steps
are described below.

3.3.1. Determination of Speculative Solutions
The purpose of the first two steps of GSCM is to calculate a large number of speculative solutions for ad(k),
ag(k), and aph(k) using the input of spectral values of anw(k). Major difference in these calculations between
the GSCM and the original SCM is associated with parameterization of the spectral shape of nonphytoplank-
ton absorption coefficient, adg(k). Whereas the original SCM adopts an exponential function of wavelength,
the GSCM uses 315 realistic shapes of âdg(k) which include the possibility of nonzero magnitude of nonalgal
particulate absorption in the NIR as accounted for by the parameter B. As emphasized above, another major
advancement of GSCM is the separation of nonalgal particulate absorption ad(k) and CDOM absorption
ag(k), which is not accomplished by the original SCM.
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Figure 4. Histograms of parameters involved in the inequality constraints #1–#4 as obtained from 260 field measurements of phytoplank-
ton absorption coefficient, aph(k), taken in the Chesapeake Bay. The aph(469)inter denotes the linearly interpolated value between aph(443)
and aph(490).
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Step 1 (Figure 2) derives speculative solutions for two unknowns, i.e., the magnitude or scaling parameter A
of the adg(k) spectrum and the NIR offset parameter B of the ad(k) spectrum, using the library of 315 shapes
of âdg(k) and constraints #1 and #2 (Table 1). The calculations start with two phytoplankton absorption
band ratios, x � aph(412):aph(443) and y � aph(490):aph(443). The possible values of the two ratios are repre-
sented by two sets of evenly distributed numbers with boundaries defined by constraints #1 and #2, i.e.,
x 5 {0.75, 0.76, . . ., 1} and y 5 {0.48, 0.49, . . ., 0.77}, respectively (Figure 2). All possible combinations for the
pair of xi and yj can be represented by a 26 3 30 matrix C, where the subscripts i and j identify one possible
pair of x and y values (Figure 2). For a given pair of xi and yj, a given shape of âdg(k)k, and given spectral val-
ues of anw(k) at 412, 443, and 490 nm, the system of equations can be written as:

xi5aphð412Þi;j;k=aphð443Þi;j;k (4)

yj5aphð490Þi;j;k=aphð443Þi;j;k (5)

anwðkÞ5aphðkÞi;j;k1adgðkÞi;j;k (6)

adgðkÞi;j;k5Ai;j;k âdgðkÞk1Bi;j;k (7)

Combining equations (4–7), we obtain a system of two equations with two unknowns, i.e., the scaling factor
Ai,j,k of the âdg(k) spectrum and the NIR parameter Bi,j,k of the ad(k) spectrum:

anwð412Þ2xi anwð443Þ5Ai;j;k ½âdgð412Þk2xi âdgð443Þk �1Bi;j;kð12xiÞ (8)

anwð490Þ2yj anwð443Þ5Ai;j;k ½âdgð490Þk2yj âdgð443Þk �1Bi;j;kð12yjÞ (9)

The speculative solutions for the two unknowns, Ai,j,k and Bi,j,k, are then derived as:

Ai;j;k5
ð12xiÞ½anwð490Þ2yj anwð443Þ�2ð12yjÞ½anwð412Þ2xi anwð443Þ�
ð12xiÞ½âdgð490Þk2yjâdgð443Þk �2ð12yjÞ½âdgð412Þk2xiâdgð443Þk �

(10)

Bi;j;k5
anwð412Þ2xianwð443Þ2Ai;j;k ½âdgð412Þk2xiâdgð443Þk�

12xi
(11)

These calculations are repeated with the same input data of anw(k) for each and every combination of xi, yj,
and âdg(k)k. As a result, a complete set of speculative solutions for A and B is obtained, which is represented
by matrix D with dimensions of 26 3 30 3 315 (see Figure 2).

Step 2 derives speculative solutions for ad(k), ag(k), and aph(k) using the basic shapes of âd(k) and âg(k) as
well as the speculative solutions of A and B derived in Step 1. For each speculative solution of Ai,j,k and Bi,j,k,
the three component absorption coefficients are calculated as:

adðkÞi;j;k5Ai;j;k wr âdðkÞp1Bi;j;k (12)

agðkÞi;j;k5Ai;j;kð12wrÞâgðkÞq (13)

aphðkÞi;j;k5anwðkÞ2adðkÞi;j;k2agðkÞi;j;k (14)

Note that the indices p, q, and r can be traced back to those used in the calculations of âdg(k)k spectra from
equation (3). The calculations with equations (12–14) are repeated with the same input data of anw(k) for each
speculative solution of Ai,j,k and Bi,j,k. As a result, a complete set of speculative solutions for ad(k)i,j,k, ag(k)i,j,k,
and aph(k)i,j,k is obtained, which is represented by matrix E with dimensions of 26 3 30 3 315 (Figure 2).

3.3.2. Determination of Feasible and Optimal Solutions
The next two steps (3 and 4) of the model determine feasible solutions from the large number of specula-
tive solutions, and identify final optimal solutions within the range of feasible solutions. The feasible solu-
tions are also used to characterize the range of variation for most likely solutions around the selected
optimal solution. As these two steps of GSCM are conceptually the same as those in the original SCM, we
here provide only a brief description. More detailed description is in Zheng and Stramski [2013a].

Step 3 of GSCM reduces the large set of speculative solutions to a smaller subset of feasible solutions for
ad(k), ag(k), and aph(k). This domain of feasible solutions is determined by applying additional three

Journal of Geophysical Research: Oceans 10.1002/2014JC010604

ZHENG ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 2611



inequality constraints (i.e., the constraints #3–#5 in Table 1) to every case of the speculative solutions. The
feasible solutions are identified as those that concurrently satisfy all inequality constraints. The last step of
the model (Step 4 in Figure 2) generates the final outputs which include the optimal solutions for ad(k),
ag(k), and aph(k) which are selected from feasible solutions and a range characterizing variation of most
likely solutions within the domain of all feasible solutions. The optimal solutions for each data product are
determined in terms of the median values of feasible solutions at each wavelength separately. The use of
median values as optimal solutions was shown to provide good overall performance of the original SCM
[Zheng and Stramski, 2013a]. The range of variation of feasible solutions around the optimal solutions is
characterized by the 10th and 90th percentiles of all feasible solutions. Such range was shown to ensure
sufficiently high probability that the actual measured values fall within this range [Zheng and Stramski,
2013a].

4. Evaluation of the Performance of the Model

In this section, we evaluate the performance of the model by comparing the ad(k), ag(k), and aph(k)
absorption spectra derived from the model with those obtained from the measurements. For this pur-
pose, we ran the GSCM with input data of anw(k) obtained from 90 field measurements of absorption
coefficients ad(k), ag(k), and aph(k) in the Chesapeake Bay, as described in section 2. Several features of
the data set comprising these 90 measurements support its suitability for evaluating the model perform-
ance. The boundaries of the inequality constraints can be considered largely independent of the field
data because the constraints #1–#4 correspond to only a few extreme cases in the field data set and the
boundaries of constraint #5 were determined from literature. Whereas the basic spectra of âd(k) and âg(k)
in our model represent the variability in the spectral shape of these coefficients, the weighting factors that
determine the proportions of âd(k) and âg(k) in âdg(k) are entirely independent of the field data, so the result-
ant spectral shapes of âdg(k) can be also considered largely independent of the field data. Furthermore, the
data set comprising 90 measurements used for evaluating the model represent only a small portion of the
entire data set used for developing the model, i.e., only stations where all three component absorption coef-
ficients concurrently passed our data quality screening are used for the evaluation of the model. Below we
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Figure 5. Example comparisons of measured absorption coefficients and the results obtained with the partitioning model for surface
water samples collected in the Chesapeake Bay. An example of the (top) ‘‘best-case-scenario’’ and (bottom) ‘‘worst-case-scenario’’ in terms
of agreement between model-derived and measured values is given.
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evaluate the model with two sets of input data of anw(k); first, the original data set of 90 measurements, and
second, the modified data set that simulates the possible absorption of nonalgal particles in the NIR spectral
region.

4.1. Evaluation Based on the Original Field Data of anw(k)
The values of component absorption coefficients, including the nonalgal particulate component ad(k), in
the original data set collected in the Chesapeake Bay is zero or close to zero in the NIR as a result of ‘‘null-
point’’ correction applied to the measurements (see section 2). We here describe results of evaluation of our
model for a subset of 90 measurements from this original data set. The most important outputs of the
model are the optimal (i.e., the median-based) solutions and the 10th–90th percentile range of feasible sol-
utions for ad(k), ag(k), and aph(k) at all wavelengths of input anw(k). Example results are shown for two
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Figure 6. Comparisons of model-derived and measured values of nonalgal particulate absorption coefficient, ad(k), CDOM absorption coef-
ficient, ag(k), phytoplankton absorption coefficient, aph(k), nonphytoplankton absorption coefficient, adg(k), and total particulate absorp-
tion coefficient, ap(k), at a light wavelength of 443 nm. Black solid circles indicate the optimal solutions of the model, which were obtained
with the use of input data of measured total nonwater absorption coefficients, anw(k), for the data set consisting of 90 samples from the
Chesapeake Bay (see text for more details). Gray vertical bars represent the 10th–90th percentile ranges of feasible solutions for all pre-
sented cases. The 1:1 relationship is shown as the diagonal line.
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samples representing the ‘‘best-case-scenario’’ (Figure 5, top) and ‘‘worst-case-scenario’’ (Figure 5, bottom)
in terms of the agreement between the model-derived and measured spectra. Although the model can
operate with input anw(k) at only four wavelengths, we show full spectra with high spectral resolution which
is consistent with the input data of anw(k). For both scenarios, the optimal solutions of ad(k), ag(k), and
aph(k) agree well with the measured spectra and the 10th–90th percentile ranges encompass the measured
spectra. The optimal solutions match very well the measured spectra for the ‘‘best-case-scenario,’’ and still
agree reasonably well with measurements for the ‘‘worst-case-scenario.’’

We now turn to comparative analysis of model-derived and measured values of ad(k), ag(k), and aph(k) for
the entire data set of 90 concurrent measurements of these coefficients. The nonphytoplankton absorption
coefficient adg(k), calculated as ad(k) 1 ag(k), and the total particulate absorption coefficient ap(k), calcu-
lated as ad(k) 1 aph(k), are also included in this comparison. Figures 6 and 7 show results from this analysis
for the blue (443 nm) and green (555 nm) wavelengths, respectively. The selection of these wavelengths is
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Figure 7. Same as Figure 6 but for the light wavelength of 555 nm.
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adequate for general characterization of model performance at a few major spectral bands that are avail-
able on past and current satellite ocean color sensors. These figures compare the optimal solutions and
10th–90th percentile ranges derived from the model with the measured values for ad(k), ag(k), aph(k),
adg(k), and ap(k).

Assuming that the differences between the model-derived and measured absorption coefficients can be
considered to represent errors of the model, we calculated several error parameters for evaluating model
performance. Specifically, the median of the ratio of model-derived optimal solutions to measured values,
MR, was calculated to provide a measure of overall bias in the modeled data relative to measurements.
The semiinterquartile range, SIQR, calculated for the ratio of modeled derived to measured values indi-
cates the spread of the modeled data. The random errors are quantified in terms of the median value of
the absolute percent difference, MPD, between the model-derived and measured data, and also by the
root mean square deviation, RMSD, between these data. The correlation coefficient, R, provides additional
information on how well the model-derived data agree with the measurements over their dynamic range.
All these error statistics are listed in Table 2 for ad(k), ag(k), and aph(k) at four basic wavelengths required
as input of the model, namely 412, 443, 490, and 555 nm. The formulas for calculating the error parame-
ters are also given in Table 2.

Figures 6 and 7 as well as Table 2 show that our model performs generally well in terms of partitioning
the total nonwater absorption anw(k) into nonalgal particulate ad(k), CDOM ag(k), and phytoplankton
aph(k) components. At the blue wavelength of 443 nm, the optimal solutions for ad(k), ag(k), and aph(k)
are generally in good agreement with measured values (Figures 6a–6c). The systematic component of the
error in model-derived ad(443), ag(443), and aph(443) represented by a departure of MR from 1 are within
610% (Table 2). The random components of the error represented by MPD or RMSD are also generally
small. The MPD values for these three absorption coefficients range between 11% and 17% and RMSD
between 0.07 and 0.14 m21 (Table 2). Compared with the performance of the model for ad(443), ag(443),
and aph(443), better agreement is found between the model-derived and measured values of adg(443)
and ap(443) (Figures 6d and 6e). This can be attributed to the enhanced absorption signal relative to noise
level for these two coefficients. This analysis for the blue band where phytoplankton exhibits maximum
absorption indicates that the various absorption components are derived with reasonably good accuracy
by our model.

At the green wavelength of 555 nm, larger errors are observed compared with the blue band. For exam-
ple, the systematic errors calculated from MR are 114%, 221%, and 28% for ad(555), ag(555), and
aph(555), respectively (Table 2). The random errors for these coefficients based on MPD are 19%, 22%,
and 24%, respectively (Table 2). The larger errors in the green portion of the spectrum are associated with
generally low or minimum magnitudes of these absorption coefficients at this wavelength.

Table 2. Summary of Error Statistics for Selected Output Variables of GSCMa

Variable R MR SIQR (%) MPD (%) RMSD (m21)

ad(412) 0.906 0.874 13.18 15.31 0.179
ag(412) 0.841 1.080 10.95 13.79 0.133
aph(412) 0.941 1.019 13.32 11.92 0.097
ad(443) 0.896 0.913 12.62 17.15 0.139
ag(443) 0.836 1.064 11.12 12.74 0.072
aph(443) 0.956 1.056 11.77 10.90 0.100
ad(490) 0.869 1.014 17.80 17.74 0.084
ag(490) 0.829 0.960 9.75 8.76 0.032
aph(490) 0.946 1.013 14.11 13.19 0.076
ad(555) 0.833 1.140 19.88 19.27 0.045
ag(555) 0.768 0.787 7.51 22.33 0.023
aph(555) 0.914 0.921 22.16 23.83 0.044

aThe value of R is the correlation coefficient between the model-derived and measured values. MR is the median ratio of model-
derived to measured values, and SIQR is the semiinterquartile range for this ratio expressed in percent and calculated as SIQR 5 100
(QR3 2 QR1)/2, where QR1 is the first quartile and QR3 is the third quartile of this ratio. The MPD is the median absolute percent differ-
ence calculated as the median of the individual absolute percent differences PDi 5 100 |Yi 2 Xi|/Xi where Yi are the model derived and Xi

are the measured values. The RMSD is the root mean square deviation between the model-derived and measured values calculated as
RMSD 5 [N21P(Yi 2 Xi)

2]1/2, with the summation from i 5 1 to N. N is the number of observations used for deriving the error statistics.
N 5 90. The model-derived values involved in the calculations of error statistics refer to the optimal solutions of our model.
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In addition to the optimal solutions,
Figures 6 and 7 show the range of
feasible solutions as defined by the
10th and 90th percentiles. The verti-
cal bars depicting the range of feasi-
ble solutions cross the 1:1 lines in
most cases, indicating that this
range effectively characterizes the
uncertainties of model-derived solu-
tions. The length of the vertical bars
representing the 10th and 90th
inter-percentile range is generally
larger for ad(k) and ag(k) than for
aph(k), adg(k), and ap(k). This indi-
cates that the partitioning results
for aph(k), adg(k), and ap(k) are gen-
erally subject to smaller uncertain-
ties than ad(k) and ag(k). This can
likely be attributed to the compen-
sating effect of errors in ad(k) and
ag(k) which leads to reduced errors
of adg(k).

To provide further insight into the
performance of the model, we show
the MR values along with the first
and third quartile ratios (QR1 and
QR3, respectively) of model-derived
optimal solutions to the measured
values of ad(k), ag(k), aph(k), adg(k),
and ap(k) at the four basic wave-
lengths (Figure 8). The MR values
(which are equivalent to the second
quartile) for the derived-to-measured
ratios vary within 1 6 0.15 for ad(k),
1 6 0.2 for ag(k), and 1 6 0.1 for
aph(k). With an increase in light
wavelength, the MR values for ad(k)
show a spectral trend to increase
from below the value of 0.9 at
412 nm to �1.15 at 555 nm (Figure
8a). The MR values for ag(k) show the
opposite trend. The spectral pattern
of MR for adg(k), aph(k), and ap(k) is
relatively flat. The QR1 and QR3 val-
ues for all these absorption coeffi-
cients generally follow a similar
spectral behavior to the MR values.

The results presented in Figures 5–8 demonstrate the capability of the GSCM to perform well with input
spectra of anw(k) with negligible NIR absorption, even though nonzero values of NIR ad(750), up to 30% of
the magnitude of ad(440), are allowed by the model formalism.

4.2. Evaluation Based on Modified Data of anw(k) with Nonzero NIR Absorption
In many aquatic environments, particularly in coastal or estuarine waters such as the Chesapeake Bay where
particles of terrestrial origin significantly affect the optical properties, the nonalgal particulate absorption
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Figure 8. (a) The spectral dependence of the median ratio, MR (solid circles), of the
model-derived optimal solution to the measured value of the nonalgal particulate
absorption coefficient, ad(k), as determined by the application of the model to the
data set of 90 absorption measurements from the Chesapeake Bay. The upper and
lower bounds of the error bar represent the first and third quartile ratios, QR1 and
QR3, of the model-derived to measured values of ad(k). The plots below are the same
as Figure 8a but for (b) the CDOM absorption coefficient, ag(k), (c) the phytoplankton
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coefficient, ad(k), is likely to exhibit sizable magnitude at NIR wavelengths. This is why our model was
designed to include the parameter B, which accounts for potential nonzero magnitude of ad(k) and its
changes in the NIR. Unfortunately, we cannot test how effective this parameter is for the performance of
the model with the original data from the Chesapeake Bay because of methodological limitations of absorp-
tion determinations including the ‘‘null-point’’ in the NIR. Therefore, for such tests we modified the original
data set of 90 measurements of absorption coefficients so that the spectra of ad(k) account for the potential
presence of absorption in the NIR.

To construct such a modified data set, a random number, hereafter referred to as Nrand, was generated for
each ad(k) spectrum in the original data set. Nrand represents possible values of the absorption ratio
between the NIR and blue bands, ad(750):ad(440), which vary between 0 and 0.3 (see constraint #5 in Table
1). The hypothetical NIR magnitude of absorption represented by the offset parameter B was calculated for
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Figure 9. Comparisons of model-derived optimal solutions and measured values of the various absorption coefficients at a light wave-
length of 443 nm for the two scenarios of input anw(k) data used in the model, i.e., original anw(k) data from our Chesapeake Bay data set
(black data points, same data as shown in Figure 6) and modified anw(k) data (gray data points). The modified data were generated by
shifting up each spectrum of nonalgal particulate absorption ad(k) in the original data set using a random NIR offset. The coefficients of
adg(k), ap(k), and anw(k) in the modified data set were recalculated accordingly with the offset-added data of ad(k) (see text for more
details).
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a given ad(k) spectrum in such a way that the absorption band ratio between 750 and 440 nm in the offset-
added ad(k) is equal to Nrand. The final spectral values of ad(k) across the entire spectrum were obtained by
adding the hypothetical NIR offset to the entire spectrum of the original ad(k). Data of the aph(k) and ag(k)
coefficients are independent of ad(k) and remain unchanged in the modified data set compared with the val-
ues in the original data set. Final data for other absorption coefficients containing the nonalgal particulate
component, i.e., adg(k), ap(k), and anw(k), were recalculated with the offset-added ad(k) data. As a result, the
input data of spectral anw(k) are shifted up according to the addition of the random offset. In view of signifi-
cant presence of mineral particles in the Chesapeake Bay, we expect that the anw(k) spectra with the added
offset might reflect the true absorption properties in the study area better than the original data in which the
‘‘null-point’’ correction was applied.

To minimize the sensitivity of results describing the model performance to the specific set of random
numbers Nrand, we created a total of five such modified data sets as described above but with different
sets of random numbers generated for each data set. We tested our partitioning model GSCM with these
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Figure 10. Same as Figure 9 but for the light wavelength of 555 nm.
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five data sets and found that five data sets
were sufficient to obtain statistically repre-
sentative results for these purposes. Figures
9 and 10 demonstrate example partitioning
results for one of the five modified data sets.
For comparison, results from the application
of GSCM to the original field data set with
no NIR absorption are also shown. Figures 9
and 10 suggest that the model is capable of
providing reasonably good results with the
input of modified anw(k) data containing the
NIR signal. In the modified data set, the
three absorption coefficients containing the
random NIR offset, i.e., ad(k), adg(k), and
ap(k), are shifted upward compared with the
values in the original field data set. The
model-derived values of these coefficients
are consistent with the upward shift of the

data (Figures 9a, 9d, 9e, 10a, 10d, and 10e). Naturally, for the two other coefficients unaffected by the NIR
offset, i.e., ag(k) and aph(k), the agreement between the model-derived and measured values remains
essentially the same for the modified and original data sets (Figures 9b, 9c, 10b, and 10c).

Table 3 provides a summary of the model performance based on results obtained with the five modified
data sets. These results are obtained by calculating the MR and MPD of the model-derived to measured
values of ad(k), ag(k), and aph(k) for each modified data set and then calculating the mean and standard
deviation of these errors. Table 3 suggests that the performance of GSCM with the modified data sets is
actually better than that with the original field data set. For example, at the blue wavelength of 443 nm,
the systematic errors calculated from the MR values for ad(k) and aph(k) are 14.0 6 1.1% and
21.7 6 0.6%, respectively, for the modified data sets. In contrast, for the original data set the errors are
larger, 28.7% and 15.6% for ad(k) and aph(k), respectively. Slight improvement in the systematic error
from 16.4% for the original data set to 24.8 6 1.6% for the modified data sets is also observed for the
model-derived ag(k). With regard to random errors represented by MPD, the performance of the model
for the modified data sets is generally comparable with that for the original data set, albeit slight
improvement can also be noticed. Based on these results, we expect that our model will be capable to
perform well in applications with input data of anw(k) containing the actual nonzero magnitude in
the NIR.

5. Conclusions

In this study, we addressed a challenging problem of developing a model for partitioning the total
nonwater absorption coefficient of natural waters anw(k) (i.e., the total absorption coefficient with
pure-water contribution assumed to be a priori known and subtracted) into separate component
absorption coefficients of phytoplankton, aph(k), nonalgal particles, ad(k), and CDOM, ag(k). We
demonstrated that this objective can be achieved with reasonably good results by formulating
a model that does not involve highly restrictive assumptions about the output coefficients of
aph(k), ad(k), and ag(k). This is an important advancement compared with the existing models that
typically utilize restrictive assumptions about the spectral shapes of component absorption
coefficients.

The formalism of our model is based on the stacked-constraints approach which has been recently applied
to develop a model for partitioning anw(k) into aph(k) and adg(k) (where adg(k) 5 ad(k) 1 ag(k)) with only
weakly restrictive assumptions about the spectral behavior of aph(k) and adg(k) [Zheng and Stramski, 2013a].
The underlying idea of the approach is to use a number of inequality constraints that must be satisfied
simultaneously by the model outputs of component absorption coefficients, which allows to relax restrictive
assumptions and account for variations in these coefficients. Our present model, referred to as the

Table 3. Summary of the MR and MPD Errors for Partitioning Results
Obtained With Five Sets of Model Calculations, Each of Which Used a
Different Set of Modified Input anw(k) Data (See Text for More Details)a

Variable MR (mean 6 std) MPD (%) (mean 6 std)

ad(412) 1.047 6 0.014 11.19 6 0.79
ag(412) 0.942 6 0.016 10.73 6 1.36
aph(412) 0.975 6 0.011 12.27 6 0.91
ad(443) 1.040 6 0.011 11.00 6 0.97
ag(443) 0.952 6 0.016 11.24 6 1.51
aph(443) 0.983 6 0.006 10.29 6 0.47
ad(490) 1.064 6 0.007 13.36 6 1.29
ag(490) 0.904 6 0.009 11.86 6 1.44
aph(490) 0.957 6 0.005 11.66 6 0.19
ad(555) 0.992 6 0.010 11.63 6 0.78
ag(555) 0.837 6 0.003 18.77 6 0.52
aph(555) 1.020 6 0.014 23.62 6 1.31

aMR and MPD (see Table 2 for definitions) between model-derived
and measured values were first calculated for each of the five sets of
model calculations, and the values shown in the table are the mean
and standard deviation (std) based on all five sets of calculations.
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Generalized Stacked-Constraints Model GSCM, expands this approach to provide additional capability to
separate the contributions of ad(k) and ag(k). Instead of typical assumption of the exponential spectral
shape of ad(k) and ag(k) in previous models, GSCM uses a library of realistic spectral shapes of ad(k) and
ag(k) determined from field data collected in the Chesapeake Bay. The use of this library ensures the suit-
ability of the model for various water types encountered in the study area. Another key feature is the use of
a parameter that quantifies nonalgal particulate absorption in the NIR spectral region. This parameter is par-
ticularly important for waters containing considerable amounts of mineral particles which can exhibit signif-
icant absorption even in the NIR.

The required input of GSCM includes the values of anw(k) at a minimum of four light wavelengths,
namely 412, 443, 490, and 555 nm. Such undemanding requirement to run the model enables its
broad applicability to data obtained from a variety of remote-sensing and in situ platforms. For exam-
ple, the model can be applied to anw(k) data derived from the inversion of radiometric measurements
[e.g., Lee et al., 2002] with multispectral satellite ocean color sensors such as the Sea-Viewing Wide
Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), MEdium
Resolution Imaging Spectrometer (MERIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS).
The capability of GSCM to partition the satellite-derived total absorption coefficient into aph(k), ad(k),
and ag(k) can play a critical role for creating new and advancing existing ocean color data products
that can be obtained from information on component absorption coefficients, especially phytoplank-
ton functional types and community size structure, concentration of chlorophyll-a, primary productiv-
ity, concentration of suspended particulate matter, and organic carbon pools associated with
particulate and dissolved components. We note, however, that the application of GSCM in this context
will be subject to uncertainties in satellite-derived data of anw(k), which can arise from different sour-
ces, for example, sensor calibration, atmospheric correction, and inversion model for estimating anw(k)
from remote-sensing reflectance. One advantage offered by the GSCM is that this model is likely to
provide no feasible solutions rather than solutions with gross error when the input data of anw(k) are
subject to gross error.

Although the present version of GSCM has been developed and validated for applications in a spe-
cific coastal region (Chesapeake Bay), we expect that the overall formalism of the model can be gen-
erally applicable and extensible to diverse optical water types in different regions. To enable such
broader applicability the GSCM will likely require some modifications on the basis of field data of
component absorption coefficients for the region of interest, especially alterations or extension of
the library of representative spectral shapes of ad(k) and ag(k), and inequality constraints and their
boundaries. It is also important to note that the data from the Chesapeake Bay used in the present
study were frequently characterized by significant differences in the spectral shapes between ad(k)
and ag(k), and departures of these spectra from the exponential shape, especially ad(k). These fea-
tures of ad(k) and ag(k) facilitate the separation of these absorption components from one another
and are expected to occur commonly in many coastal and inland aquatic environments. Therefore,
one can expect that GSCM can be readily adaptable to perform reasonably well in such environ-
ments. An important task for the near future research will be also to test the GSCM formalism in
other environments, especially open ocean waters where the differences in the spectral shapes
between ad(k) and ag(k) and the departures from the exponential spectral shape of these coeffi-
cients can be smaller than in coastal, estuarine, and inland waters.
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