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To provide an example of statistical metrics used in our work to develop inverse optical 

algorithms and assess and validate their performance (which include the semi-analytical 

algorithms and empirical algorithms for ocean color applications), we provide below a copy of 

Table 2 from our recent publication (Joshi et al., 2023). This publication is devoted to validation 

of new empirical POC algorithms that we developed for global ocean color satellite applications 

as described in another recent publication (Stramski et al., 2022). In Joshi et al. (2023), the 

validation analyses of new POC algorithms were conducted using two distinct types of validation 

datasets: an independent in situ dataset (i.e., in situ data independent of in situ algorithm 

development data) and satellite-in situ matchup datasets. These analyses provided the uncertainty 

statistics characterizing the performance of algorithms under two scenarios; (i) when the algorithm 

input of ocean remote-sensing reflectance, Rrs, originates from in situ measurements and therefore 

is unaffected by uncertainties in satellite observations, and (ii) when the input Rrs is estimated from 

satellite observations and therefore is additionally affected by multiple sources of uncertainty (e.g., 

satellite radiometry, atmospheric correction, satellite-in situ matchup spatial and temporal 

differences). 

We note that in addition to statistical parameters shown in the table below, which mostly 

represent the aggregate statistics associated with systematic and random components of 

uncertainty, we also routinely analyze other statistics, for example the probability distributions and 

Bland-Altman-like plots of differences between the algorithm-derived and reference (usually 

measured) values; however, the length limit of publications typically prevents the presentation of 

all analyzed statistics in published papers. The uncertainty of reference measurements is typically 

reported (e.g., based on replicate measurements and knowledge associated with development and 

evaluation of a given measurement protocol) but can be also incorporated into assessment of final 

uncertainty of the algorithm-derived product. 
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Table 2 from Joshi et al. (2023). Statistical metrics that are used in validation and intercomparison of 
different POC algorithms. 

Symbol Description 
N Number of samples 
xi, yi Observed “x” and model-predicted (algorithm-derived) “y” value for sample i of N 

Model evaluation metrics for log-transformed data 
R Pearson’s product moment correlation coefficient between log(yi) and log(xi) 
S and I Slope and intercept of Model II linear regression of log(yi) on log(xi)  
MdSA Median symmetric accuracy (in percent) calculated as (10[median(|log(yi) − log(xi)|] – 1) × 100 
MBlog Mean bias calculated as 10[∑(log(yi) − log(xi))/N] 

Model evaluation metrics for untransformed data 
MdR Median ratio of (yi / xi) 
MdB Median bias; median value of (yi − xi) 
MdAPD Median absolute percentage difference, median value of 100 × [|(yi − xi)/ xi|] 

RMSD Root mean square deviation calculated as [( 1 N⁄ ) ∑ �yi − xi�
2N

i=1 ]
0.5

 
% wins Percentage wins in pairwise comparisons of closeness of xi and yi data for a given pair 

of compared algorithms 
 

For PACE mission we are developing a multi-step inverse optical algorithm, called 4SAA for 

4-step Semi-Analytical Algorithm, to estimate 10 hyperspectral ocean optical properties from 

PACE OCI observations of Rrs. The 4SAA consists of 4 independent component models operating 

in a stepwise fashion: (i) Kd model for estimating the spectral attenuation coefficient for 

downwelling plane irradiance averaged over the first attenuation depth, <Kd>, from input spectral 

Rrs; (ii) inverse AOP-IOP model (referred to as LS2) for estimating the total spectral absorption, 

a, and backscattering, bb, coefficients from input spectral Rrs and <Kd>; (iii) ANW absorption 

partitioning model for estimating the spectral phytoplankton, aph, and non-phytoplankton, adg, 

absorption coefficients from input non-water absorption coefficient, anw; and (iv) ADG absorption 

partitioning model for estimating the spectral CDOM absorption, ag, and “depigmented” (a proxy 

for non-algal) particulate absorption, ad, coefficients from input adg. The development of four 

component models of 4SAA builds upon and enhances previous studies of Jamet et al. (2012) for 

Kd model, Loisel and Stramski (2000) and Loisel et al. (2018) for LS2 model, Zheng and Stramski 

(2013) for ANW model, and Stramski et al. (2019) for ADG model. These previous studies include 

the analysis to assess the model skills. For example, Loisel et al. (2018) report on several statistical 

metrics characterizing uncertainties in LS2-derived products as assessed through the analysis of 

three different types of datasets, the synthetic dataset, in situ dataset, and satellite-in situ matchup 

dataset. 
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For application of 4SAA to PACE mission, quantification and understanding of uncertainty 

estimates and uncertainty budget of satellite-derived 4SAA products will require characterization 

of all main sources of uncertainties within the 4SAA structure and propagation of uncertainties 

through multiple steps of 4SAA as appropriate to a specific data product under consideration. We 

envision a need for a multi-level approach in the process of validation and uncertainty 

characterization of 4SAA products. It is noteworthy that in this multi-level approach not every 

component of validation analysis will require all quantities involved in 4SAA to be measured 

together, and not every component of uncertainty characterization will require the use of Rrs. For 

example, for characterization of intrinsic uncertainties of ANW and ADG absorption partitioning 

models, high-quality measurements of constituent absorption coefficients will be sufficient. Other 

levels of uncertainty characterization will involve the use of in situ Rrs as input to Kd and LS2 

models and the use of PACE OCI-derived Rrs as input to Kd and LS2 models in conjunction with 

matchup in situ measurements of data products. The multi-level uncertainty characterization of 

4SAA products will provide information on individual contribution of every step of 4SAA starting 

with satellite-derived Rrs and progressing to combined uncertainty of different products derived 

downstream within the multi-step structure of 4SAA. A combined uncertainty of the result will be 

generated from the identified uncertainties using statistical principles of forward uncertainty 

propagation, with simulation-based Monte Carlo approach providing likely the most appropriate 

approach given the formulation and structure of 4SAA. 

 

References 

Jamet, C., H. Loisel, and D. Dessailly. 2012. Retrieval of the spectral diffuse attenuation coefficient 

Kd(λ) in open and coastal ocean waters using a neural network inversion. J. Geophys. Res. 

Oceans, 117, C10023. 

Joshi, I. D., D. Stramski, R. A. Reynolds, and D. H. Robinson. 2023. Performance assessment and 

validation of ocean color sensor-specific algorithms for estimating the concentration of 

particulate organic carbon in oceanic surface waters from satellite observations. Remote Sens. 

Environ., 286, 113417. https://doi.org/10.1016/j.rse.2022.113417 

Loisel, H., and D. Stramski. 2000. Estimation of the inherent optical properties of natural waters 

from irradiance attenuation coefficient and reflectance in the presence of Raman scattering. 

Appl. Opt., 39, 3001–3011. 



4 
 

Loisel, H., D. Stramski, D. Dessailly, C. Jamet, L. Li, and R. A. Reynolds. 2018. An inverse model 

for estimating the optical absorption and backscattering coefficients of seawater from remote-

sensing reflectance over a broad range of oceanic and coastal marine environments. J. 

Geophys. Res. Oceans, 123, 2141–2171. 

Stramski, D., I. Joshi, and R. A. Reynolds. 2022. Ocean color algorithms to estimate the 

concentration of particulate organic carbon in surface waters of the global ocean in support of 

a long-term data record from multiple satellite missions. Remote Sens. Environ., 269, 112776. 

https://doi.org/10.1016/j.rse.2021.112776 

Stramski, D., L. Li, and R. A. Reynolds. 2019. Model for separating the contributions of non-algal 

particles and colored dissolved organic matter to light absorption by seawater. Appl. Opt., 58, 

3790–3806. 

Zheng G. and D. Stramski. 2013. A model based on stacked-constraints approach for partitioning 

the light absorption coefficient of seawater into phytoplankton and non-phytoplankton 

components. J. Geophys. Res. Oceans, 118, 2155–2174. 


