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To provide an example of statistical metrics used in our work to develop inverse optical
algorithms and assess and validate their performance (which include the semi-analytical
algorithms and empirical algorithms for ocean color applications), we provide below a copy of
Table 2 from our recent publication (Joshi et al., 2023). This publication is devoted to validation
of new empirical POC algorithms that we developed for global ocean color satellite applications
as described in another recent publication (Stramski et al., 2022). In Joshi et al. (2023), the
validation analyses of new POC algorithms were conducted using two distinct types of validation
datasets: an independent in situ dataset (i.e., in situ data independent of in situ algorithm
development data) and satellite-in situ matchup datasets. These analyses provided the uncertainty
statistics characterizing the performance of algorithms under two scenarios; (i) when the algorithm
input of ocean remote-sensing reflectance, Ry, originates from in situ measurements and therefore
is unaffected by uncertainties in satellite observations, and (ii) when the input Ry is estimated from
satellite observations and therefore is additionally affected by multiple sources of uncertainty (e.g.,
satellite radiometry, atmospheric correction, satellite-in situ matchup spatial and temporal
differences).

We note that in addition to statistical parameters shown in the table below, which mostly
represent the aggregate statistics associated with systematic and random components of
uncertainty, we also routinely analyze other statistics, for example the probability distributions and
Bland-Altman-like plots of differences between the algorithm-derived and reference (usually
measured) values; however, the length limit of publications typically prevents the presentation of
all analyzed statistics in published papers. The uncertainty of reference measurements is typically
reported (e.g., based on replicate measurements and knowledge associated with development and
evaluation of a given measurement protocol) but can be also incorporated into assessment of final

uncertainty of the algorithm-derived product.



Table 2 from Joshi et al. (2023). Statistical metrics that are used in validation and intercomparison of
different POC algorithms.

Symbol Description
N Number of samples
Xi, Vi Observed “x” and model-predicted (algorithm-derived) “y” value for sample i of N
Model evaluation metrics for log-transformed data
R Pearson’s product moment correlation coefficient between log(y;) and log(x;)
Sand / Slope and intercept of Model II linear regression of log(y;) on log(x;)
MdSA Median symmetric accuracy (in percent) calculated as (1Qmedian(logt) ~logCDI_ 1) x 100
MBiyg Mean bias calculated as 10200207 ~loge)/N]
Model evaluation metrics for untransformed data
MdR Median ratio of (y; / x;)
MdB Median bias; median value of (y; — x;)
MdAPD Median absolute percentage difference, median value of 100 X [|(y; — x;)/ xi]
0.5
RMSD Root mean square deviation calculated as [(1/N) Zf\il(yl. — x,~)2 ]
% wins Percentage wins in pairwise comparisons of closeness of x; and y; data for a given pair

of compared algorithms

For PACE mission we are developing a multi-step inverse optical algorithm, called 4SAA for
4-step Semi-Analytical Algorithm, to estimate 10 hyperspectral ocean optical properties from
PACE OCI observations of Rrs. The 4SAA consists of 4 independent component models operating
in a stepwise fashion: (i) Kd model for estimating the spectral attenuation coefficient for
downwelling plane irradiance averaged over the first attenuation depth, <Ks>, from input spectral
R:s; (i1) inverse AOP-IOP model (referred to as LS2) for estimating the total spectral absorption,
a, and backscattering, by, coefficients from input spectral Ris and <Kg>; (iii) ANW absorption
partitioning model for estimating the spectral phytoplankton, aph, and non-phytoplankton, aqg,
absorption coefficients from input non-water absorption coefficient, anw; and (iv) ADG absorption
partitioning model for estimating the spectral CDOM absorption, ag, and “depigmented” (a proxy
for non-algal) particulate absorption, a4, coefficients from input aqe. The development of four
component models of 4SAA builds upon and enhances previous studies of Jamet et al. (2012) for
Kd model, Loisel and Stramski (2000) and Loisel et al. (2018) for LS2 model, Zheng and Stramski
(2013) for ANW model, and Stramski et al. (2019) for ADG model. These previous studies include
the analysis to assess the model skills. For example, Loisel et al. (2018) report on several statistical
metrics characterizing uncertainties in LS2-derived products as assessed through the analysis of
three different types of datasets, the synthetic dataset, in situ dataset, and satellite-in situ matchup

dataset.



For application of 4SAA to PACE mission, quantification and understanding of uncertainty
estimates and uncertainty budget of satellite-derived 4SAA products will require characterization
of all main sources of uncertainties within the 4SAA structure and propagation of uncertainties
through multiple steps of 4SAA as appropriate to a specific data product under consideration. We
envision a need for a multi-level approach in the process of validation and uncertainty
characterization of 4SAA products. It is noteworthy that in this multi-level approach not every
component of validation analysis will require all quantities involved in 4SAA to be measured
together, and not every component of uncertainty characterization will require the use of Rys. For
example, for characterization of intrinsic uncertainties of ANW and ADG absorption partitioning
models, high-quality measurements of constituent absorption coefficients will be sufficient. Other
levels of uncertainty characterization will involve the use of in situ Ry as input to Kd and LS2
models and the use of PACE OCI-derived R;s as input to Kd and LS2 models in conjunction with
matchup in situ measurements of data products. The multi-level uncertainty characterization of
4SAA products will provide information on individual contribution of every step of 4SAA starting
with satellite-derived Ry and progressing to combined uncertainty of different products derived
downstream within the multi-step structure of 4SAA. A combined uncertainty of the result will be
generated from the identified uncertainties using statistical principles of forward uncertainty
propagation, with simulation-based Monte Carlo approach providing likely the most appropriate

approach given the formulation and structure of 4SAA.
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