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1 Introduction

The Microphysical Aerosol Properties from Polarimetry (MAPP) remote sensing retrieval al-
gorithm is used to retrieve aerosol and ocean retrieval products from airborne and spaceborne
multi-angle, multi-channel polarimetric sensors. MAPP has been applied to the following
polarimeter instruments: The NASA Research Scanning Polarimeter (RSP), SPEXone and
Hyper-Angular Rainbow Polarimeter #2 (HARP2) onboard the NASA Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) mission, and PolCube.
For example, for PolCube, the inputs of the MAPP algorithm are the Level-1 (L1) PolCube
polarimeter measurements (and their corresponding uncertainties) of the total radiance and
the degree of linear polarization at three visible bands at 410, 555, 670 nm and one near-
infrared band at 864 nm, which are contained with the PolCube PACE Level-1C (L1C)
data.
The outputs of the MAPP algorithm are the retrieved atmospheric and ocean state pa-
rameters, i.e. Level-2 (L2) aerosol and ocean retrieval products, the aerosol optical and
microphysical properties over the ocean including the fine-mode, sea-salt, and dust aerosol
optical depth (AOD); the fine-mode, sea-salt, and dust e↵ective radius and variance; and
the fine-mode single-scattering albedo (SSA).
A unique feature of MAPP is the focus on coupled retrievals of aerosol microphysical proper-
ties and ocean color parameters using optimal estimation with vector radiative transfer and
Lorenz-Mie calculations. MAPP can use neural network models for vector radiative transfer
(VRT) computations or use on-the-fly VRT computations which can be advantageous for
aircraft platforms where the sensor altitude and the aerosol location (top height, layering,
etc.) vary. MAPP also uses accurate, pre-computed Lorenz-Mie inherent optical property
(IOP) look-up-tables (LUTs). Over 90% of the signal measured by a spectroradiometer or
polarimeter is due to the molecular and aerosol scattering in the atmosphere and the Fresnel
reflection of the ocean surface, so that less than 10% of the signal is due to subsurface ocean
inherent optical properties (particulate and dissolved matter) (Gordon, 1997). Polarimeter
measurements of the polarized reflectance at multiple angles can lead to improved retrievals
of underwater properties by enabling accurate characterization of the aerosol signal through
retrieval of AOD, microphysical aerosol properties, including aerosol e↵ective radius, SSA,
and the real refractive index. Another advantage of polarimeters like RSP is that they do
not saturate in sunglint, which is a significant issue for instruments like MODIS.
The methodology of the MAPP algorithm is described in Section 2, and is summarized by
using optimal estimation theory to invert the polarimetric measurements in order to obtain
the retrieval parameters, which determine the state of the atmosphere (aerosol) and ocean
models. In Section 2.1, we present this retrieval framework based on principles of optimal
estimation, while Section 2.2 includes descriptions of the polarimetric sensors to which MAPP
has been applied. Section 3 discusses pixel masking including the highly important topic of
cloud masks. Section 4 summarizes the MAPP L2 output format specification and products
with a table providing a list of all products. Section 5 provides a user manual describing
how to run the MAPP algorithm. Section 6 describes the polarimetric uncertainty models
used in MAPP. Section 7 provides details on the product uncertainty calculations.
The RSP MAPP products are also summarized on the NASA LaRC polarimeter website
(https://science.larc.nasa.gov/polarimetry) (Stamnes et al.) and are available for download
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at the NASA GISS RSP website (https://data.giss.nasa.gov/pub/rsp) (Cairns et al.).
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2 The MAPP algorithm

In this section, we describe our overall methodology, which involves formulating the inverse
problem for observations from a polarimetric sensor. We use optimal estimation theory
to formulate this inverse problem such that we have a forward model that goes from the
input atmospheric/aerosol/oceanic/land state to the output observations measured by the
polarimetric sensor. An iteration is performed such that the input is changed until the
modeled output measurements from this “forward model” fit the observations to within the
measurement uncertainties of the polarimetric sensor.
In Section 2.1, we present this retrieval framework based on principles of optimal estimation,
while Section 2.2 includes descriptions of the polarimetric sensors to which MAPP has been
applied. The forward models are described in Section 2.3. The neural network forward mod-
els are described in Section 2.4. The aerosol and cloud models are described in Section 2.5.
The atmosphere models are described in Section 2.6. The ocean and land surface reflectance
models are described in Section 2.7.
The MAPP algorithm can be used to develop new polarimeter instruments through the
generation of user-customized simulated polarimeter data for an arbitrary number of wave-
lengths, viewing zenith angles, Stokes parameters, and instrument-solar geometries. MAPP
can be used to perform retrievals on such synthetic datasets to quantify and optimize the
polarimeter’s performance for a given geophysical variable. MAPP can also be used to test
the performance of di↵erent forward models (atmospheric and ocean/land) state parameters
for a given polarimeter instrument. MAPP can also be used to quantify the performance of
existing polarimeter instruments. For example, we can generate simulated data for the seven
RSP window channels at � = 410, 469, 555, 670, 864, 1594, and 2264 nm, and add noise as
discussed in Section 6. (The complete list of RSP channels is described in Section 2.2. For
RSP, the 960 nm channel to determine the water vapor absorption using Eq. (26).)
A detailed description of the MAPP algorithm is given in Stamnes et al. (2018), where it
is applied to the RSP (Cairns et al., 1999). A description of MAPP applied to PolCube is
given in (Stamnes et al., 2021). A detailed description of MAPP applied to the SPEXone and
HARP2 polarimeters onboard the future PACE mission is given in (Stamnes et al., 2023).
We start with a description of the MAPP optimal estimation algorithm for polarimeter
instruments. A flow chart of of the MAPP algorithm for PACE is provided in Fig.1.
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Figure 1: MAPP flow chart of retrieval methodology including the pre-processing, optimal
estimation inversion, and post-processing procedures. This example is specifically for the
PACE polarimeters but the procedure is similar for RSP and PolCube.
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2.1 Optimal estimation

The optimal estimation method used in MAPP has its heritage from a method used for invert-
ing atmospheric temperature and water vapor vertical profiles, cloud, and surface properties
from hyperspectral infrared sounders (Wu et al., 2017). For retrievals performed on both real
and simulated polarimeter data, this method is found to be reliable and e�cient in terms of
the number of forward model evaluations required to achieve convergence.

2.1.1 State vector

The state vector of MAPP retrieval parameters for observations of aerosols over the ocean
can be defined as follows:

x = h⌧556f rnf nrf nif ⌧556c rnc �gf �gc zFTL v [Chla] nrc rnd ⌧556di

where the labels f , c, and d denote fine-mode aerosol, coarse-mode sea salt aerosol, and
coarse-mode dust aerosol, respectively. The aerosol size distributions are assumed to be
lognormal. ⌧556 is the optical depth at the wavelength 556 nm. nr and ni are respectively
the real and imaginary refractive indices. rn is the median radius. �g is the size distribution
width. The ocean surface roughness is described by the windspeed v [m/s] and the subsurface
absorption and scattering is parameterized in terms of the chlorophyll concentration Chla
[mg/m3] with details provided in Section 2.7.1. ⌧555f is the fine (accumulation) mode AOD
at 556 nm, rnf is the number-density mean radius with geometric width �gf , nrf + inif is
the fine-mode refractive index (assumed to be spectrally invariant), ⌧556c is the AOD of the
coarse mode, rnc is the coarse mode number-density mean radius with geometric width �gc.
The coarse mode refractive index, nrc+ inic, is assumed a priori to be equal to that of water
to represent hydrated sea salt (marine) aerosols and to be assumed from climatology for non-
spherical dust particles (see Section 2.5.1). The ranges allowed for each of the parameters in
this 14-parameter retrieval are provided in Table 1, where the numbered parameters comprise
the state vector. Parameters 1-11 are included in the bimodal aerosol ocean retrieval that
incorporates fine-mode aerosol mixed with coarse-mode sea salt aerosol. Parameters 1-14 are
used in the trimodal aerosol retrieval that adds non-spherical dust aerosols mixed into the
free tropospheric layer (FTL). A detailed description of the aerosol model and how aerosol
location handled are discussed in Section 2.5.1.

2.1.2 Cost function

The cost function is defined as Rodgers (2000)

�
2(x) = �(x) (1)

= �(x)data + �(x)prior

=
1

2
(f � y)TS�1

✏ (f � y) +
1

2
(x� xa)

TS�1

a (x� xa).

The vector radiative transfer model, described in Section 2.3, is our forward model, providing
RIL , RIR and DoLP, represented by f , which are a function of the state vector x, Eq. (1),
and which provide a suitable model for the measured RIL , RIR and DoLP, represented by
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Table 1: MAPP aerosol and ocean retrieval parameters and ranges.

No. Parameter [Unit] Min Max
1. ⌧556f 1e-5 0.7
2. ⌧556c 1e-5 0.3
3. nrf 1.39 1.65
4. nif 1e-5 0.045
5. rnf [µm] 0.075 0.15
6. rnc [µm] 0.5 1.5
7. �gf ln(1.4) ln(2.01)
8. �gc ln(1.35) ln(2.01)
9. FTL base height [km] 1.01 7.0
10. v [m/s] 1.0 13.0
11. Chla [mg/m3] 0.01 9.0

reff,f [µm] 0.10 0.51
veff,f 0.12 0.62
reff,c [µm] 0.63 5.07
veff,c 0.09 0.62

12. nrc 1.333 1.366
13. rnd [µm] 0.6 1.5
14. ⌧556d 0 0.2

�gd ⌘ �gc

reff,d [µm] 0.75 5.07
veff,d 0.09 0.62

y (either real measurements from RSP or synthetic measurements generated by the forward
model with noise added). The first term may be called the data term since it depends
on residuals of the forward model and the measurement, taking into account measurement
error through its covariance matrix S✏. The second term may be considered the a priori term
since it is the departure of the state vector x from the a priori state vector xa, with a priori
uncertainty provided by the covariance matrix Sa. The a priori state vector and covariance
matrices for our problem are defined below. It is convenient to define the normalized cost
function of the data term by dividing by the number of measurements, m:

�
0 =

1

m

p
�(x)data

=
1

m

r
1

2
(f � y)TS�1

✏ (f � y). (2)

2.1.3 Retrieval convergence criteria

Generally speaking for a successful retrieval, 1

m

p
�(x) < 1, and if there happen to be

redundant measurements then 1

m

p
�(x) ⌧ 1. For inversions of real RSP data, we consider

retrievals successful if �0
< 0.1.
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2.1.4 Transformations

A transformation into b-space is used to smooth out changes between the di↵erent state
parameters that have di↵erent units and ranges, which is similar to a transformation into
log-space (Stamnes et al., 2018). First, the state vector x is transformed into fifth-root-space
x1 to smooth changes in the state parameters, analogous to a transformation into log-space:

x1 = x1/5
. (3)

In order to ensure that the state vector does not go out-of-bounds, described by xlow and
xhigh using the ranges of the state vector following Eq. (1), we found that the following
transformation to b-space works well:

b = log
x1 � xlow

1

xhigh

1 � x1

. (4)

If x is out-of-bounds the argument of the log will be negative, and will evaluate to an imagi-
nary number. In order to transform from b-space to x1-space we can use the transformation:

x1 =
xhigh

1

1 + e�b
+

xlow

1

1 + eb
. (5)

Then x is given by x = x1
5. The retrieval is performed in b-space. Therefore by definition,

x1 2 R+, and thus x will also be positive and real-valued.

2.1.5 Jacobian

The m⇥ n Jacobian matrix K ⌘ @
@xf is expressed in b-space by:

Kb =
df

db
=

dx

db

df

dx
=

dx

db
K =

dx

dx1

dx1

db
K. (6)

2.1.6 Scaled cost function

The scaled cost function is a scalar value �
2

s defined by:

�
2

s =
1

2
(f � y)TS�1

✏ (f � y) +
1

2
(b� ba)

TS1
�1

a (b� ba) (7)

where ba is the a priori state vector in b-space and S1a is the a priori covariance in b-space
proportional to the Jacobian.

2.1.7 Iteration

In nonlinear optimal estimation, we minimize the cost function, Eq. (1) or Eq. (7), through an
iterative process whereby the state vector x is changed until the resulting forward-modeled
measurements f(x) match the measurements y within their uncertainties, as outlined in
Fig. 1. A transformation into b-space is used to smooth out changes between the di↵erent
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state parameters that have di↵erent units and ranges. The next step in the iteration is given
according to the following equation:

bi+1 = ba + Si[(f � y) +Kb(bi � ba)] (8)

where bi, ba, and Kb represent in b-space the state vector at the ith step, the a priori
state vector, and the Jacobian matrix, respectively. Si is the iteration-dependent constraint
matrix Wu et al. (2017). The iteration-dependent constraint matrix Si is given by:

Si = (KT
b⇤iS

�1

✏ Kb + S1
�1

a )+ (9)

where S1a is the a priori constraint matrix in b-space. The symbol + denotes the pseudoin-
verse. The iteration-dependent damping factor

⇤i =
1

a0 � a0�1

1+en0�i

(10)

has constants a0 = 1000 and n0 = 8 that are determined empirically such that the state
vector converges to a solution in an e�cient and robust manner (Wu et al., 2017).
In practice, we train a neural network to provide the output for our forward model. We
take finite di↵erences of this neural network forward model to compute the Jacobian, which
we can e�ciently compute by consolidating all inputs into a single call to TensorFlow per
iteration as described in Section 2.4.3.

2.1.8 A priori covariance matrix and constraints

We use a conservative and simple way to specify the a priori state vector, xa, using the mean
of the allowable range of each retrieval parameter, and which is also used as the first guess
xi:

xa = (xlow + xhigh)/2 ⌘ xi. (11)

The a priori covariance matrix, defined as a diagonal matrix, is given by

Sa = diag( ~�a � ~�a), (12)

where ~�a is a vector representing the standard deviations of the a priori values, which
represent 1� uncertainties, and is set equal to the a priori state vector, so that ~�a = xa and
~�a � ~�a denotes the Schur product.1 The measurement error covariance matrix S✏ is given in
Section 6.

2.1.9 Posterior covariance matrix

Once the retrieval has converged to x̂, we calculate the posterior covariance matrix at x̂, or
the state error covariance matrix, given by

Ŝ�1(x̂) = K(x̂)T⇤iS
�1

✏ K(x̂) + S�1

a . (13)

1
Also known as the Hadamard product, it is simply the element-by-element product. See

https://en.wikipedia.org/wiki/Hadamard product (matrices).
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The square root of the diagonals of Ŝ give the 1� uncertainty estimates of the retrieval
accuracy, and the non-diagonal elements indicate how correlated the retrieval parameters
are to each other. A diagonal or nearly-diagonal Ŝ(x̂) indicates that the retrieval parameters
are orthogonal to each other, without overlapping impacts on the modeled measurements.
The MAPP L2 data files with the retrievals provide the uncertainty estimates corresponding
to the state vector from Eq. (13). Also provided are the propagated uncertainties for the
fine- and coarse-mode e↵ective radii, e↵ective variances, and the fine-mode SSA. For details
on the propagation of errors, see Section 7.

12



References

Michael J Behrenfeld, Richard H Moore, Chris A Hostetler, Jason Gra↵, Peter Gaube,
Lynn M Russell, Gao Chen, Scott C Doney, Stephen Giovannoni, Hongyu Liu, et al.
The North Atlantic aerosol and marine ecosystem study (NAAMES): science motive and
mission overview. Frontiers in Marine Science, 6, 2019.

Alexander Berk, Lawrence S Bernstein, and David C Robertson. MODTRAN: A moderate
resolution model for LOWTRAN. Technical report, DTIC Document, 1987.

Brian Cairns, Edgar E Russell, and Larry D Travis. Research scanning polarimeter: cali-
bration and ground-based measurements. In SPIE’s International Symposium on Optical
Science, Engineering, and Instrumentation, pages 186–196. International Society for Op-
tics and Photonics, 1999.

Brian Cairns, Barbara E Carlson, Ruoxian Ying, Andrew A Lacis, and V Oinas. Atmospheric
correction and its application to an analysis of hyperion data. IEEE Transactions on
Geoscience and Remote Sensing, 41(6):1232–1245, 2003.

Brian Cairns, M Lacis Alexandrov, Barbara Carlson, et al. Inversion of multi-angle radia-
tion measurement. Technical report, Columbia University, New York, New York; NASA
Goddard Institute for Space Studies, New York, New York (US), 2005.

(Cairns et al.). NASA GISS RSP website. https://data.giss.nasa.gov/pub/rsp. Accessed:
2017-09-16.

Eduard Chemyakin, Snorre Stamnes, Sharon P. Burton, Xu Liu, Chris Hostetler, Richard
Ferrare, Brian Cairns, and Oleg Dubovik. Improved Lorenz-Mie look-up table for lidar
and polarimeter retrievals. Front. Remote Sens., 2:711106, 2021. URL https://doi.org/
10.3389/frsen.2021.711106.

Nan Chen, Wei Li, Charles Gatebe, Tomonori Tanikawa, Masahiro Hori, Rigen Shimada,
Teruo Aoki, and Knut Stamnes. New neural network cloud mask algorithm based on
radiative transfer simulations. Remote Sensing of Environment, 219:62–71, 2018.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann,
L. Travis, and M. Mishchenko. Sensitivity of multiangle, multispectral polarimetric re-
mote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired
during the MILAGRO campaign. Remote Sensing of environment, 118:284–308, 2012.

Jacek Chowdhary, Brian Cairns, and Larry D Travis. Contribution of water-leaving radiances
to multiangle, multispectral polarimetric observations over the open ocean: bio-optical
model results for case 1 waters. Applied Optics, 45(22):5542–5567, 2006.

Jacek Chowdhary, Pengwang Zhai, Emmanuel Boss, Heidi M Dierssen, Robert J Frouin,
Amir I Ibrahim, Zhongping Lee, Lorraine Ann Remer, Michael Twardowski, Feng Xu,
et al. Modeling atmosphere-ocean radiative transfer: A pace mission perspective. Frontiers
in Earth Science, 7:100, 2019.

47

https://doi.org/10.3389/frsen.2021.711106
https://doi.org/10.3389/frsen.2021.711106


D Cohen, S Stamnes, T Tanikawa, Endre R Sommersten, Jakob J Stamnes, Jon K Lotsberg,
and K Stamnes. Comparison of discrete ordinate and monte carlo simulations of polarized
radiative transfer in two coupled slabs with di↵erent refractive indices. Optics express, 21
(8):9592–9614, 2013.

Charles Cox and Walter Munk. Measurement of the roughness of the sea surface from
photographs of the Sun’s glitter. JOSA, 44(11):838–850, 1954.

JF De Haan, PB Bosma, and JW Hovenier. The adding method for multiple scattering
calculations of polarized light. Astronomy and astrophysics, 183:371–391, 1987.

Oleg Dubovik, Brent Holben, Thomas F Eck, Alexander Smirnov, Yoram J Kaufman,
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