Measuring In Water Radiometric Quantities and AOPs

Richard C. Zimmerman, Victoria J. Hill, David Ruble Bio-Optical Research Group Department of Ocean, Earth and Atmospheric Sciences Old Dominion University Norfolk, VA 23529

BORG

Radiometric Instruments: SatLantic HyperPro Profiling Radiometer

- Primary Radiometric Measurements:
 - Surface (above water) irradiance $E_d(1, 0+)$ or $E_s(1)$
 - Submarine downwelling irradiance $E_d(I,z)$
 - Submarine upwelling radiance $L_u(I,z)$
- Ancillary Measures
 - C,T,D
 - Chl *a* Fluorescence
- Normally capable of radiometric profiles in depths exceeding 5 m
- By increasing the buoyancy (decreasing the drop rate), we can obtain profiles in 3 to 5 m depths typical of giant kelp forests

SatLantic HyperPro Profiling

Radiometer QA/QC issues

Reject frames when tilt exceeds 5°
mostly near the surface (<0.5 m)
Correct for temporal variation in *E_s(1)* during profile collection (multiple casts over 5 to 20 min, depending on profile depth and repeatability)

What HyperPro measures:

- Above water downwelling spectral irradiance $E_d(1, 0+)$
 - aka $E_{\rm s}(I)$
- In water downwelling spectral irradiance $E_d(I,z)$
- In water Upwelling spectral radiance $L_{\mu}(I,z)$ What we calculate from the profiles:
 - Downwelling irradiance attenuation $K_d(I,z)$
 - Upwelling radiance attenuation $K_{Lu}(I,z)$
 - Remote sensing reflectance $R_{rs}(I)$

When we can't profile in shallow water:

- Deploy HyperPro and HTSRB as floating buoys
 - Calculate $K_{Lu}(I)$ from difference in upwelling radiances measured by HyperPro at 0.2 m and HTSRB at 0.65 m depth, respectively
 - Calculate $R_{rs}(I)$ by propagating L_u to the surface and across the air-water interface
 - Unable to determine $K_d(I,z)$
 - Requires precise radiometric calibration among sensors

HyperPro and HTSRB data processing involve:

- Radiometric conversion of each channel
 - mfr-provided CAL files
 - renewed annually or before major expedition
- Dark current correction using shuttered spectra collected on each profile/deployment
- Common wavelength registration among channels
 - each spectrograph array is unique wrt pixel wavelength calibration
 - cubic spline interpolation to 1.0 nm (native res ~3 nm)
 - common wavelength registration required to calculate AOPs via channel ratios

We can tow the HTSRB to obtain spatial estimates of $R_{\rm b}(I)$, bottom type, seagrass LAI, etc.

- Integrated depth sounder and GPS recorded with each spectral frame
- Need to know $K_{Lu}(I)$
 - Periodic HyperPro profiles
 - IOPs and R/T modeling (e.g., *Hydrolight*)
- For details, see Dierssen et al. 2002. Limnol. Oceanogr. 48:444-455

Radiometric Instruments: Diver-Operated Benthic Bio-Optical Spectrometer (DOBBS)

- 3-channel HydroRad (HOBI Labs)
- Measured radiometric quantities:
 - Reference $E_d(I)$ 1 m above substrate
 - $E_{d}(I)$ and $E_{u}(I)$ deployed on htadjustable wand
- Calculated AOPs:

•
$$R_{\rm b}(I)$$
 as $E_{\rm u-wand}(I)/E_{\rm d-wand}(I)$
• $K_{\rm d}(I)$ as $\frac{-\ln\left(\frac{E_{\rm d-wand}(\lambda,h)}{E_{\rm d-ref}(\lambda,1)}\right)}{1-h}$

Radiometric Instruments: Diver-Operated Benthic Bio-Optical Spectrometer (DOBBS)

- Vertical profiles of E_d(*I*) and E_u(*I*) within and beneath vegetation canopies
- Correct for temporal variation in $E_d(I)$ during profiles using $E_{d-ref}(I)$
- Calculate $K_{d-canopy}(I)$ and $K_{d-water}(I)$ separately
- Determine $R_{\text{canopy}}(I)$

Radiometric Instruments: Robust Underwater Benthic Light Estimator (Rl

- 4-channel HydroRad (HOBI Labs) mounted to a portable frame
- 2 plane irradiance ($E_d(I)$) sensors
 - mount at different heights to compute $K_d(I)$
- 2 Gershun sensors
 - $E_{\text{G-up}} = \frac{1}{2} [E_0(I) + E(I)]$
 - $E_{\text{G-dn}} = \frac{1}{2} [E_0(I) E(I)]$

quantities and AOPs from RUBLE

data

• Gershun sensors:

- $E_{o}(I) = E_{G-up}(I) + E_{G-dn}(I)$ • $E(I) = E_{G-up}(I) - E_{G-dn}(I)$
- Plane irradiance sensors:
 - $K_{d}(I) = -\ln[E_{d}(I,0)/E_{d}(I,h)]/h$
 - *h* is typically 1 m
- Plane and Gershun sensors combined:
 - $E_{u}(I) = Ed(I) E(I)$
 - $\overline{\mu}(\lambda) = \frac{E_d(\lambda) + E_u(\lambda)}{E_o(\lambda)}$

DOBBS and RUBLE data processing involve:

- Spectrum averaging of each channel
 - usually 10 spectral frames per sample
 - programmable feature of HR-3 controller
- Radiometric conversion of each channel
 - mfr-provided CAL files
 - renewed annually or before major expedition
- Common wavelength registration among channels to calculate AOPs via channel ratios
 - each spectrograph array is unique wrt pixel wavelength calibration
 - cubic spline interpolation to 1.0 nm (~0.3 nm native res)
 - smooth with 21 nm running mean (boxcar)

Example Data Sub-canopy $E_d(\lambda)$ at Mohawk Reef

13 January 2009

BORG

NASA AOP Workshop UC Santa Barbara