Challenges in measuring near-surface light fields

Dariusz Stramski

NASA AOP Workshop

Santa Barbara, CA 13-15 January 2009

Satlantic SPMR in freefall mode Data recorded at 6 Hz, ~0.14 m resolution 1 deep + 2-4 shallow casts per station Aim for stable sky conditions Satlantic ProSoft Raw data converted to engineering units using calibration file and measured dark currents. Measured pressure offsets applied. Tilt edited (data \geq 5° rejected). User Intervention E_d and L_u data interpolated to common depth field (0.1 m). Visual inspection of individual profiles. Surface extrapolation interval chosen. Custom code K_{Ed} , K_{Lu} , $E_d(0^-)$, $L_u(0^-)$ calculated from linear LSQ fit of Intransformed data Null depth estimates transferred across air-sea interface: $E_d(0^+) = E_d(0^-)/(1-\alpha)$ a = 0.043 $L_w = L_u (0^-) [1 - (1 - n_w)^2 / (1 + n_w)^2] n_w^{-2}$ $n_w = 1.343$

Visual inspection for quality control and reproducibility

Averaging of replicates and creation of final data products.

 R_{rs} calculated as $L_w / E_d(0+)$

Basic principles involved in threshold analysis of light fluctuations (Dera and Stramski 1986)

Underwater Porcupine Radiometer System

Scripps Pier, January 22, 2008

Changes in light fluctuations with depth

Example 1-min timeseries of normalized downwelling irradiance at different depths

Detailed view of individual wave-focusing events that show very strong pulses of short duration in the E_d signal

The most intense pulses of focused light exceed the timeaveraged irradiance by a factor greater than 10.

The duration of pulses is on the order of millisecods to tens of millisecods.

E_d sensors with different surface area of the cosine collector

Scripps Pier, Jan 2008

Example time-series of E_d (532 nm) at z = 0.5 m obtained with cosine collectors of different surface area

Example time-series of E_d (532 nm) at z = 0.5 m obtained with cosine collectors having different surface area (contd.)

Power spectra of downward irradiance fluctuations

Santa Barbara Channel, 11 September 2008 I = 532 nm, Clear sky, Sun $q_s = 31 - 35^\circ$, Wind = 4.1 - 6.4 m s⁻¹

Probability distributions of downward irradiance

Santa Barbara Channel, 11 September 2008 I = 532 nm, Clear sky, Sun $q_s = 31 - 35^\circ$, Wind = 4.1 - 6.4 m s⁻¹

Statistical moments of downward irradiance fluctuations

Santa Barbara Channel, 11 September 2008 Clear sky, Sun $q_s = 31 - 35^\circ$, Wind = 4.1 - 6.4 m s⁻¹

