Prototype of the Web-Based AOP Data Processor

Stanford Hooker
NASA/CVO
Baltimore, Maryland

David Stroud
UMBC/CVO
Baltimore, Maryland

13 January 2009 Laboratory for Hydrospheric and Biospheric Processes/Code 614.2



Description of the Development Environment

The prototype application was developed using Adobe Flex and is based on the
CVO processor in its most basic form. The reasons for choosing Flex are as follows:

®* Flex is an open source framework for developing and maintaining a Rich
Internet Application (RIA). It is designed to consistently deploy with all the
major browsers, desktops, and operating systems.

* Flex is very similar to “traditional” software development environments, like
RealBasic, XCode, Metroworks, etc., in that you write code, debug it, and
deploy the application. These traditional packages, however, only leverage a
single technology, are mostly proprietary, and require multiple compiles to
make the application available to the various OSs, and usually require
recompiling for OS updates.

* Flex on the other hand combines multiple proven technologies (such as, AS
3.0, XML, and CSS), and leverages HTML, Flash Player, and AIR as the
runtime environment. Use of these runtime environments means the OSs can
be different, and change over time, but if the end-user has the latest version
of a plug-in, they will always be able to utilize the software, without the
developer having to rewrite and recompile on a regular basis.

13 January 2009 Laboratory for Hydrospheric and Biospheric Processes/Code 614.2 2



Definitions

® Actionscript (AS) 3.0 is an object-oriented programming language and follows
ECMA-262 specifications. It is very similar to Javascript, in fact you could use
Javascript in a Flex application with no issues. AS was used to convert the
Basic code used for CVO processor visualizations. AS is a sophisticated
language with the needed properties, methods, and functions to do high-
order math. AS was also used to build the user interface (Ul) navigation logic.

* Extensible Markup Language (XML) is a general purpose specification. It's
major purpose is to aid in sharing commonly understood structured data
within multiple information systems. It is recommended by W3C, and is an
open standard that specifies lexical grammar and parsing requirements. XML
(actually MXML) was used in the layout of all the Ul components. The MXML
components communicate directly with AS. In fact, the MXML components
get turned into AS during compilation.

® Cascading Style Sheets (CSS) is a style-sheet language that uses XML to
describe how to present a document or, in this case, the Ul. It is typically
used to set global and sometimes local style rules (color, font, and size). In
the case of Flex and this project, it was used to set the graphical icons for the
buttons. CSS is a standard that is understood across all the major browsers.

13 January 2009 Laboratory for Hydrospheric and Biospheric Processes/Code 614.2



Definitions (cont.)

* Adobe Integrated Runtime (AIR) is a free downloadable plug-in. The plug-in,
available for all the major OSs, provides the runtime environment for AIR
applications. AIR applications can be developed using Flex, Ajax, and Flash
and then deployed directly to the desktop instead of having to use an HTML
page and a browser for display. So, what used to be considered a web
application, can now be deployed as a stand-alone application that uses web
technologies, but more importantly, with access to a local drive. Such access
has not been possible with prior web applications because of security issues.

® Flex programs that run in the Flash runtime environment have the capability
to connect to servers and databases, but not the local machine. Flex
programs that use AIR can connect to the local drives and make calls to
remote servers. Flex communicates with “back-end” technologies using any
number of “middleware” languages (e.g., ASP, PHP, and Coldfusion). This
project uses PERL in the form of common gateway interface (CGl) scripts
during the two steps of pre-processing, the loading and sending of all data
(both in the plot and in populating all the Ul components), and in the
processing phase. CGl will also be used to communicate between the Flex
application and the database residing on the CVO servers that will archive all
of the uploaded data and results from the user community.

13 January 2009 Laboratory for Hydrospheric and Biospheric Processes/Code 614.2



Description of the User Environment

There is no need for a browser to use the processor. The only time a browser is

required is to register as a user, download the software, and access updates. The

entire server—client environment can be hosted on a single machine, which, of

course, is how the application is built and tested in the first place (note that this will

also allow the entire environment to be taken into the field). The usual architecture,

however, will be a user located at a site far removed from the server. In this scenario,
the user environment is as follows:

* Once approved, the applicant will receive an email with a pass key that will
permit access to a secure page on the NASA/CVO web site containing
instructions for the download and installation of both the AIR plug-in and the
PROSIT application.

® |Logging in to PROSIT will start a session, meaning that the application on the
client machine will be in communication with the CVO server. This is not a
streaming connection, but is done intermittently on an as-needed basis. The
important point is that in order for users to make use of the software, they
have to be connected to the internet, but they do not have to be using a
browser (i.e., the situation will be very similar to using a mail client, like
Eudora).

13 January 2009 Laboratory for Hydrospheric and Biospheric Processes/Code 614.2 5



Description of the User Environment (cont.)

® All transactions during a work session follow the same basic structure: front-
end (client), middleware (server), back-end (server), and front-end (client). As
an example: The user either requests or submits data via the Ul. These data
are sent to the appropriate CGl executable, via the internet connection, that
resides on the server. The CGI script runs and processes the request or
submission. This may return a value to PROSIT immediately or trigger one or
more additional scripts in a sequence that do other processing, which then
either return data, or store data for later use on the server.

* For example: The user clicks the Next button on the Ingest page, which
triggers the client to select the Pre-processing tab and a request a CGl script
on the server to send a list of all available projects to be pre-processed. This
information is displayed, the user selects a project, and clicks on the Pre-
process button, which sends the name back to a CGI script on the server.
The CGI script finds the project and runs a correction program and then a
conversion program. The pre-processed data are stored on the server, to be
loaded during a future step. Once these steps are complete, the CGI script
informs the client whether this is has been completed successfully or not. If
successful, the Ul enables both the Next button in the Pre-processing Tab
and the Depth Interval Tab, so the user can go to the next step.

13 January 2009 Laboratory for Hydrospheric and Biospheric Processes/Code 614.2



