AOP Measurements at USF

David English 1 Laura Lorenzoni 1 Chuanmin Hu 1 Frank Muller-Karger 1,2 Ken Carder 1,3 Jim Ivey 1,4

² University of Massachusetts Dartmouth, School of Marine Science and Technology

³ SRI, International

⁴ Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission

Past USF Measurements and Future Activities

Past:

 Bahamas, FL Keys, Gulf of Mexico (Carder:1998-2005)

- Hyperspectral AOPs from slow-drop profiler
- Hyperspectral AOPs from Unmaned Underwater Vehicles (UUV – both ROV & AUV)
- CARIACO program (Muller-Karger): multispectal AOP's, 1997 present

Current and Future:

- CARIACO (2009-2012)
- AOPs from AUV/Glider
- Multispectral & hyperspectral profilers

USF AOP Equipment

Multispectral

- Biospherical Instruments: MER, PRR600, PRR2600
- Satlantic: OCR-507

Hyperspectral

- Handheld radiometers (Spectrascan, Ocean Optics, ASD, Spectrix)
- USF: Spectrix, AMOS
- Licor: Li-1800 (above water)
- Satlantic: HyperOCR
- HOBI Labs: HydroRad-4

Carder AOP Measurements

- AOP [E_d(I), L_u(I), E_{d0+}(I)] measurements from UUV, profilers, and fixed platforms
- Majority of measurements collected from 1998-2005 using USF 'Spectrix' radiometers (internal shutter for dark samples)
- Spectral and radiometric calibration using in-lab light source and solar validation
- ~2-3 nm data binned into spectral (usually 5,10, or 15 nm) intervals using Matlab or custom software

Computed directly from AOPs • $R_{rs}(1,z) \& K_{d}(1,z)$ Subsequent estimates • $R_{rs}(I), R_{bottom}(I)$ • $E_{d-bottom}(I)$ and further model estimates • $a_{total}(I)$ • a_{ph}(I), a_g(I), c(I)

CARIACO

- E_d & L_u (& E_s): Biospherical MER (1997-1999,13 wavelengths); PRR-600, 7 wavelengths
- Derived products: K_d, R_{rs}, PAR
- Additional measurements: R_{rs}(I) and HPLC pigment.
- All data submitted to SeaBASS
- Monthly measurements from 1997 – 2009, projected to continue to 2012

CARIACO collection and processing

- Data is collected between 11 am and 2 pm in CARIACO (10.5°N)
- Dark cast in the field 24 hrs before data cast.
- Biospherical and IDL software (customized) is used to process the PRR-600 data.
- CARIACO data is separated into casts, binned (10 cm intervals), and an extrapolation interval is visually selected

Field Data Validation/Sanity check

- In CARIACO done with surface (R_{rs}) and historical measurements
- When possible compare to E_{d0+}(I)
- With UUV data: comparison with nearby R_{rs}(I), E_{d0+}(I), or IOP and discrete water sample measurements combined with radiometric models

(compare E_d, L_u, R_{rs} or K_d with estimates from IOPs & models)

AOPs from gliders

- 4 Webb-gliders with E_d and L_u sensors at USF
- Satlantic OCR507: 412,443,490,555,620,665, & 683 nm
- Fluor. Chl & CDOM, b_b(660), & CTD

Ancillary measurements

- <u>Fundamental</u>: Depth, time, lat & lon., orientation (roll, pitch, heading), altitude above seabed, temperature, chl. & b_b(660)
- <u>Often available</u>: fluor. chl & gelbstoff, b_b & c at one or more wavelengths, E_{d0+} (par), salinity, meteorological & seastate info
- <u>May be available</u>: R_{rs}(I), E_{d0+}(I), ac9 data, a(I), WETLabs eco-VSF, bottom type, discrete water samples [a_p(I), a_{phi}(I), a_g(I), ChI, phaeo.]

Measurement Concerns

- Maintaining Instruments: calibration, validation, service
- Available expertise and time
- Control/stability of instrument orientation
- Biofouling
- Aging of instrumentation
- Self-shading of instruments
- Transportation (international instrument shipping -> lack of regular maintenance)
- Comparison between diverse instruments and models (not enough or too much?)

AOP future goals

- Operational deployment of UUV/gliders with AOP sensors
- Develop processing protocols for AOPs from gliders
- Improve operational protocols for reliable AOP measurements from diverse platforms
- Combine AOP measurements with satellite or airborne data to improve accuracy or provide validation measurements (additional satellite cal/val data)
- Under some conditions, IOPs estimated from AOPs can be as accurate as IOP measurements

Acknowledgements

Funding for past and present AOP research from NASA, NSF, NOAA, USGS, EPA, ONR, and the State of Florida