

Practical Calibration and Validation Sean Bailey

January 14th, 2009

Calibration ≠ Validation

an obvious, but necessary distinction

similarities:

use of radiometric *in situ* data
coincident in time/space with satellite measurement

differences:

forward vs. inverse atmospheric correction processing

- calibration is performed at TOA
- validation is done at the surface

calibration data requires lower measurement uncertainties

calibration and validation are NOT everything

in situ data are useful for other endeavors:

- 📚 algorithm development
- 😻 water-quality monitoring
- 😻 data assimilation
- 📚 ecosystem monitoring

all are not equalbut that's not a bad thing

there IS a hierarchy for data

(in my corner of the world anyway...)

- 1. calibration
- 2. validation / algorithm development
- 3. general research
- 4. monitoring activities

things we can control

- 😻 where in situ data is collected
 - 😻 stable environment
 - spatially and temporally homogenous
 - 😻 known atmospheric conditions
- 😻 when it is collected
 - 😻 as close to satellite overpass as possible
 - 😻 as often as possible
- 😻 what is collected
 - all measurements necessary to produce <u>GOOD</u> waterleaving radiance data
- 😻 how the data are collected
 - with well characterized and calibrated instruments
 - 😻 appropriate deployment methodology
- how the data are processed
 - consistency is the key!

the big bad atmosphere

Percent of water-leaving radiance to TOA signal

	Oligotrophic (C₃<0.1 mg m⁻³)	Mesotrophic (C _a 0.1>1mg m ⁻³)	Eutrophic (C _a >mg m ⁻³)
443 nm	17.25%	11.9%	6.67%
555 nm	6.67%	8.5%	16.1%
670 nm	1%	1.5%	6.8%

80 to 99% (or more) of the at-sensor radiance comes from the atmosphere...

January 14th, 2009

so, for validation ... what does this mean?

our stated goal for radiometric accuracy is 5%

–Vol 1, SeaWiFS Technical Report Series

😻 assuming

- $L_{\rm w}$ is about 15% of TOA
- 5% uncertainty on the *in situ* data

... we need to know satellite calibration to 1.5%...

how about calibration?

situ is 'truth' (i.e. perfect) we need to know the sensor-algorithm system 'calibration' to no worse than 0.75%

are we there?

January 14th, 2009

nope...but close... (about 0.9%)

January 14th, 2009

NASA AOP Workshop

9

more of that atmosphere

solid: *in situ* open circles: SeaWiFS Jan 21, 2001 Santa Barbara Channel

January 14th, 2009

the count matters

January 14th, 2009

calibration requirements

conventional wisdom

- clear maritime atmosphere
- clear-water site
- horizontally homogeneous water mass
- hyperspectral instrumentation
- extraordinary calibration
- daily-to-weekly monitoring
- avoidance of platform perturbation
- cloud-free site
- coincident aerosol measurements
- atmosphere free of terrestrial influence
- free from biofouling

calibration requirements

A reality check

- clear maritime atmosphere not critical
- clear-water site not critical
- horizontally homogeneous water mass
- hyperspectral instrumentation not critical
- extraordinary calibration critical, how extraordinary is debatable...
- daily-to-weekly monitoring not necessary
- avoidance of platform perturbation
- cloud-free site not critical
- coincident aerosol measurements not critical
- atmosphere free of terrestrial influence not critical
- free from biofouling

what's really important?

 instrument calibration and characterization
how the data are collected
how the data are processed