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Abstract – Deformable models are used extensively in image processing, computer vision, and medical

imaging applications, particularly to delineate object boundaries. Problems associated with initialization

and poor convergence to boundary concavities, however, have limited their utility. This chapter presents an

external force for deformable models, largely solving both problems. This external force, which we call

gradient vector flow (GVF), is computed as a diffusion of the gradient vectors of a gray-level or binary edge

map derived from the image. It differs fundamentally from traditional deformable model external forces in

that it cannot be written as the negative gradient of a potential function, and the corresponding deformable

model is formulated directly from a dynamic force equation rather than a energy minimization formulation.

Using several two-dimensional examples and two three-dimensional examples, we show that GVF has a

large capture range and is able to move deformable models into boundary concavities.

1 Introduction

Deformable models are curves or surfaces defined within an image domain that can move under the influence

of internal forces coming within the model itself and external forces computed from the image data. The

internal and external forces are defined so that the model will conform to an object boundary or other

desired features within an image. Deformable models are widely used in many applications, including edge

detection [10, 5], shape modeling [18, 15], segmentation [12, 8], and motion tracking [19, 12].

There are two general types of deformable models in the literature today: parametric deformable

models [10, 4, 18, 15] and geometric deformable models [2, 14, 3]. In this chapter, we focus on parametric

deformable models, which synthesize parametric curves or surfaces within an image domain and allow

them to move toward desired features, usually edges. Typically, the models are drawn toward the edges

by potential forces, which are defined to be the negative gradient of potential functions. Additional forces,

such as pressure forces [4], together with the potential forces comprise the external forces. There are also

internal forces designed to hold the model together (elasticity forces) and to keep it from bending too much

(bending forces).

There have been two key difficulties with parametric deformable models. First, the initial model must,

in general, be close to the true boundary or else it will likely converge to the wrong result. Several methods

have been proposed to address this problem including multiresolution methods [11], pressure forces [4],
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and distance potentials [5]. The basic idea is to increase the capture range of the external force fields

and to guide the model toward the desired boundary. The second problem is that deformable models have

difficulties progressing into boundary concavities [7, 1]. There has been no satisfactory solution to this

problem, although pressure forces [4], control points [7], domain-adaptivity [6], directional attractions [1],

and the use of solenoidal fields [16] have been proposed. Most of the methods proposed to address these

problems, however, solve only one problem while creating new difficulties. For example, multiresolution

methods have addressed the issue of capture range, but specifying how the deformable model should move

across different resolutions remains problematic. Another example is that of pressure forces, which can

push an deformable model into boundary concavities, but cannot be too strong or “weak” edges will be

overwhelmed [17]. Pressure forces must also be initialized to push out or push in, a condition that mandates

careful initialization.

In this chapter, we present a class of external force fields for deformable models that addresses both

problems listed above. These fields, which we call gradient vector flow (GVF) fields, are dense vector

fields derived from images by solving a vector diffusion equation which diffuses the gradient vectors

of a gray-level or binary edge map computed from the image. GVF was first introduced in [23] and a

generalization to GVF was then proposed in [22]. In this chapter, we present the GVF in the context of its

generalized framework. We call the deformable model that uses the GVF field as its external force a GVF

deformable model. The GVF deformable model is distinguished from nearly all previous deformable model

formulations in that its external forces cannot be written as the negative gradient of a potential function.

Because of this, it cannot be formulated using the standard energy minimization framework; instead, it is

specified directly from a dynamic force equation.

Particular advantages of the GVF deformable model over a traditional deformable model are its insen-

sitivity to initialization and its ability to move into boundary concavities. As we show in this chapter, its

initializations can be inside, outside, or across the object's boundary. Unlike deformable models that use

pressure forces, a GVF deformable model does not need prior knowledge about whether to shrink or expand

toward the boundary. The GVF deformable model also has a large capture range, which means that, barring

interference from other objects, it can be initialized far away from the boundary. This increased capture

range is achieved through a spatially varying diffusion process which does not blur the edges themselves,

so multiresolution methods are not needed. The external force model that is closest in spirit to GVF is the
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distance potential forces of Cohen and Cohen [5]. Like GVF, these forces originate from an edge map of

the image and can provide a large capture range. We show, however, that unlike GVF, distance potential

forces cannot move a deformable model into boundary concavities. We believe that this is a property of

all conservative forces which characterize nearly all deformable model external forces, and that exploring

non-conservative external forces, such as GVF, is an important direction for future research in deformable

models.

This chapter is organized as follows. We focus our most attention in 2-D and introduce the formulation

for traditional 2-D parametric deformable models in Section 2. We next describe the 2-D GVF formulation in

Section 3 and demonstrate its performance on both simulated and real images in Section 4. We then briefly

present the formulation for 3-D GVF deformable models and their results on two examples in Section 5.

Finally, in Section 6, we conclude this chapter and point out future research directions.

2 Background

2.1 2-D Parametric Deformable Models

A traditional 2-D parametric deformable model or deformable contour is a curve ���������
	 ��������
���������� , ���	 ��
���� , that moves through the spatial domain of an image to minimize the energy functional

� ����� �! �#"%$ ��&������'$ (*),+-$ ��& &������'$ (.��) �0/�1�2 �3���������546� (1)

where " and + are weighting parameters that control the deformable contour's tension and rigidity, respec-

tively, and � & ����� and � & & ����� denote the first and second derivatives of ������� with respect to � . The external

potential function
��/�1�2

is derived from the image so that it takes on its smaller values at the features of

interest, such as boundaries. Given a gray-level image 7 �3�8
��9� , viewed as a function of continuous position

variables �3�8
��9� , typical external potential functions designed to lead a deformable contour toward step edges

are [10]:

�;: �5</�1�2 �3�8
��9�=� >?$ @ 7 �3�8
��9�'$ ( (2)�;: ( </�1�2 �3�8
��9�=� >?$ @A��BDCE�3�8
��9�8F 7 �3�8
��9���'$ ( (3)
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where BDC �3�8
��9� is a two-dimensional Gaussian function with standard deviation � and @ is the gradient

operator. If the image is a line drawing (black on white), then appropriate external energies include [4]:

�;:�� </�1�2 �3�8
��9�=� 7 �3�8
��9� (4)�;: � </�1�2 �3�8
��9�=� BDC �3�8
��9�8F 7 �3�8
��9� (5)

It is easy to see from these definitions that larger � 's will cause the boundaries to become blurry. Such large

� 's are often necessary, however, in order to increase the capture range of the deformable contour.

A deformable contour that minimizes
�

must satisfy the Euler equation [10]

"8� & & �����8> + � & & & & ����� >,@ �0/�1�2 � � (6)

This can be viewed as a force balance equation

��� � 2 ) � : 	 </�1�2 � � (7)

where
��� � 2 � "8� & & �����%> + � & & & & ����� and

� : 	 </�1�2 � > @ �0/�1�2 . The internal force
�
� � 2

discourages stretching

and bending while the external potential force
� : 	 </�1�2 pulls the deformable contour toward the desired image

edges.

To find a solution to (6), the deformable contour is made dynamic by treating � as function of time � as

well as � — i.e., ����� 
 � � . Then, the partial derivative of � with respect to � is then set equal to the left hand

side of (6) as follows �
����� 
 � � � "8��& &���� 
 � � > + ��& & & &���� 
 � � >,@ �0/�1�2 (8)

When the solution ����� 
 � � stabilizes, the term ������� 
 � � vanishes and we achieve a solution of (6). A numerical

solution to (8) can be found by discretizing the equation and solving the discrete system iteratively (cf. [10]).

We note that most deformable contour implementations use either a parameter that multiplies ��� in order to

control the temporal step-size, or a parameter that multiplies @ � /�1�2 , which permits separate control of the

external force strength. In this chapter, we normalize the external forces so that the maximum magnitude is

equal to one, and use a unit temporal step-size for all the experiments.

2.2 Behavior of Traditional Deformable Contours

An example of the behavior of a traditional deformable contour is shown in Fig. 1. Fig. 1a shows a ��������� -

pixel line-drawing of a U-shaped object (shown in gray) having a boundary concavity at the top. It also
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shows a sequence of curves (in black) depicting the iterative progression of a traditional deformable contour

( "�� ��� � , + � ��� � ) initialized outside the object but within the capture range of the potential force field.

The potential force field
� : 	 </�1�2 � > @ �;: � </�1�2 where � � ��� � pixel is shown in Fig. 1b. We note that the final

solution in Fig. 1a solves the Euler equations of the deformable contour formulation, but remains split across

the concave region.

The reason for the poor convergence of this deformable contour is revealed in Fig. 1c, where a close-up

of the external force field within the boundary concavity is shown. Although the external forces correctly

point toward the object boundary, within the boundary concavity the forces point horizontally in opposite

directions. Therefore, the deformable contour is pulled apart toward each of the “fingers” of the U-shape,

but not made to progress downward into the concavity. There is no choice of " and + that will correct this

problem.

Another key problem with traditional deformable contour formulations, the problem of limited capture

range, can be understood by examining Fig. 1b. In this figure, we see that the magnitude of the external

forces die out quite rapidly away from the object boundary. Increasing � in (5) will increase this range, but

the boundary localization will become less accurate and distinct, ultimately obliterating the concavity itself

when � becomes too large.

Cohen and Cohen [5] proposed an external force model that significantly increases the capture range of

a traditional deformable model. These external forces are the negative gradient of a potential function that

is computed using a Euclidean (or chamfer) distance map. We refer to these forces as distance potential

forces to distinguish them from the traditional potential forces defined in Section 2.1. Fig. 2 shows the

performance of a deformable contour using distance potential forces. Fig. 2a shows both the U-shaped

object (in gray) and a sequence of contours (in black) depicting the progression of the deformable contour

from its initialization far from the object to its final configuration. The distance potential forces shown in

Fig. 2b have vectors with large magnitudes far away from the object, explaining why the capture range is

large for this external force model.

As shown in Fig. 2a, this deformable contour also fails to converge to the boundary concavity. This

can be explained by inspecting the magnified portion of the distance potential forces shown in Fig. 2c. We

see that, like traditional potential forces, these forces also point horizontally in opposite directions, which

pulls the deformable contour apart but not downward into the boundary concavity. We note that Cohen and
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Cohen's modification to the basic distance potential forces, which applies a nonlinear transformation to the

distance map [5], does not change the direction of the forces, only their magnitudes. Therefore, the problem

of convergence to boundary concavities is not solved by distance potential forces.

3 GVF Deformable Contours

Our overall approach is to use the dynamic force equation (8) as a starting point for designing a deformable

contour. We define below a novel external force field �*�3� � called gradient vector flow (GVF) field and

replace the potential force > @ ��/�1�2 in (8) with �*�3� � , yielding

�
� ��� 
 � � � "8��& &���� 
 � � > + ��& & & &���� 
 � � )��*�3� � (9)

We call the parametric curve solving the above dynamic equation a GVF deformable contour. It is solved

numerically by discretization and iteration, in identical fashion to the traditional deformable contour [10].

Although the final configuration of a GVF deformable contour will satisfy the force-balance equation

(7), this equation does not, in general, represent the Euler equations of the energy minimization problem in

(1). This is because �*�3� � can not, in general, be written as the negative gradient of a potential function. The

loss of this optimality property, however, is well-compensated by the significantly improved performance of

the GVF deformable contour.

3.1 Edge Map

We begin by defining an edge map
� �3� � derived from the image 7 �3� � having the property that it is larger

near the image edges.1 We can use any gray-level or binary edge map defined in the image processing

literature (cf. [9]); for example, we could use

� �3� � � > �;: � </�1�2 �3� � (10)

where � � � , 2, 3, or 4. Three general properties of edge maps are important in the present context. First,

the gradient of an edge map @ � has vectors pointing toward the edges, which are normal to the edges at the

1Other features can be sought by redefining ���	��
 to be larger at the desired features.
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edges. Second, these vectors generally have large magnitudes only in the immediate vicinity of the edges.

Third, in homogeneous regions, where 7 �3� � is nearly constant, @ � is nearly zero.

Now consider how these properties affect the behavior of a traditional deformable contour when the

gradient of an edge map is used as an external force. Because of the first property, a deformable contour

initialized close to the edge will converge to a stable configuration near the edge. This is a highly desirable

property. Because of the second property, however, the capture range will be very small, in general.

Because of the third property, homogeneous regions will have no external forces whatsoever. These last

two properties are undesirable. Our approach is to keep the highly desirable property of the gradients near

the edges, but to extend the gradient map farther away from the edges and into homogeneous regions using a

computational diffusion process. As an important benefit, the inherent competition of the diffusion process

will also create vectors that point into boundary concavities.

3.2 Gradient Vector Flow

We define the GVF field �*�3� � as the equilibrium solution to the following vector diffusion equation

� � ��� � $ @ � $ � @;( � >��8� $ @ � $ � � � >,@ � � (11a)

� �3� 
 � ��� @ � �3� � (11b)

In Eq. (11a), the first term on the right is referred to as the smoothing term since this term alone will produce

a smoothly varying vector field. The second term is referred as the data term since it encourages the vector

field � to be close to @ � computed from the data. The weighting functions � ��� � and �8��� � apply to the

smoothing and data terms, respectively. Since these weighting functions are dependent on the gradient of

the edge map which is spatially varying, the weights themselves are spatially varying, in general. Since we

want the vector field � to be slowly-varying (or smooth) at locations far from the edges, but to conform to@ � near the edges, � ��� � and �8��� � should be monotonically non-increasing and non-decreasing functions of$ @ � $ , respectively.

In [23], the following weighting functions were chosen:

� � $ @ � $ � � � (12a)

�8� $ @ � $ � � $ @ � $ ( (12b)
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Since � ��� � is constant here, smoothing occurs everywhere; however, �8��� � grows larger near strong edges, and

should dominate at the boundaries. Thus, GVF computed using such weighting functions should provide

good edge localization. The effect of smoothing becomes apparent, however, when there are two edges in

close proximity, such as when there is a long, thin indentation along the boundary. In this situation, GVF

tends to smooth between opposite edges, losing the forces necessary to drive a deformable contour into this

region.

To address this problem, in [22] we proposed weighting functions in which � ��� � gets smaller as �8��� �
becomes larger. Then, in the proximity of large gradients, there will be very little smoothing, and the

effective vector field will be nearly equal to the gradient of the edge map. There are many ways to specify

such pairs of weighting functions. In [22], the following weighting functions were used:

� � $ @ � $ �=� ��� : � ������ < 	 (13a)

�8� $ @ � $ � � �%> � � $ @ � $ � (13b)

The GVF field computed using such weighting functions will conform to the edge map gradient at strong

edges, but will vary smoothly away from the boundaries. The specification of



determines to some extent

the degree of tradeoff between field smoothness and gradient conformity.

The vector diffusion equation (11) specifying GVF with various weighting functions, can be imple-

mented using an explicit finite difference scheme described in [23], which is stable if the time step � � and

the spatial sample intervals � � and � � satisfy

� �
� � � � �
� ����� 1

where ����� 1 is the maximum value of � ��� � over the range of gradients encountered in the edge map image.

While an implicit scheme for the numerical implementation of (11) would be unconditionally stable and

therefore not need this condition, the explicit scheme is faster. Still faster methods — for example, the

multigrid method — are possible.

In most examples, the use of either (12) or (13) produces very similar results. Here, we will demonstrate

most of the properties of GVF using (12). When necessary to contrast their performance, we will refer to

the GVF using (12) and (13) as GVF-I and GVF-II respectively.
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4 Experiments

In this section, we first show several examples of GVF field computations on simple objects and demonstrate

several key properties of GVF deformable contours. We then show the results of applying GVF deformable

contours on both a noisy image and a real MR image. We used "�� ��� � and + � ��� � for all deformable

contours and � � ��� ! for GVF unless stated separately. The deformable contours were dynamically

reparameterized to maintain contour point separation to within 0.5–1.5 pixels (cf. [13]). All edge maps

used in GVF computations were normalized to the range 	 ��
���� .
4.1 Convergence to Boundary Concavity

In our first experiment, we computed the GVF field for the same U-shaped object used in Figs. 1 and 2. The

results are shown in Fig. 3. Comparing the GVF field, shown in Fig. 3b, to the traditional potential force

field of Fig. 1b, reveals several key differences. First, like the distance potential force field (Fig. 2b), the

GVF field has a much larger capture range than traditional potential forces. A second observation, which

can be seen in the closeup of Fig. 3c, is that the GVF vectors within the boundary concavity at the top of the

U-shape have a downward component. This stands in stark contrast to both the traditional potential forces

of Fig. 1c and the distance potential forces of Fig. 2c. Finally, it can be seen from Fig. 3b that the GVF field

behaves in an analogous fashion when viewed from the inside of the object. In particular, the GVF vectors

are pointing upward into the “fingers” of the U shape, which represent concavities from this perspective.

Fig. 3a shows the initialization, progression, and final configuration of a GVF deformable contour. The

initialization is the same as that of Fig. 2a, and the deformable contour parameters are the same as those in

Figs. 1 and 2. Clearly, the GVF deformable contour has a broad capture range and superior convergence

properties. The final deformable contour configuration closely approximates the true boundary, arriving at

a sub-pixel interpolation through bilinear interpolation of the GVF force field.

As discussed in Section 3.2, the GVF-I field tends to smooth between opposite edges when there is a

long, thin indentation along the object boundary while the GVF-II field does not. Fig. 4 demonstrates this

performance difference. Using an edge map obtained from the original image shown in Fig. 4a, both the

GVF-I field ( ��� ��� ! ) and the GVF-II field (

 � ��� ��� ) were computed, as shown zoomed in Figs. 4b and 4c,

respectively. We note that in this experiment both the GVF-I field and the GVF-II field were normalized with
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respect to their magnitudes and used as external forces. Next, a deformable contour ( " � ��� ! � , + � � ) was

initialized at the position shown in Fig. 4d and allowed to converge within each of the external force fields.

The GVF-I result, shown in Fig. 4e, stops well short of convergence to the long, thin, boundary indentation.

On the other hand, the GVF-II result, shown in Fig. 4f, is able to converge completely to this same region. It

should be noted that both GVF-I and GVF-II have wide capture ranges (which is evident because the initial

deformable contour is fairly far away from the object), and they both preserve subjective contours (meaning

that they cross the short boundary gaps).

4.2 Results on Gray-level Images

The underlying formulation of GVF is valid for gray-level images as well as binary images. To compute

GVF for gray-level images, the edge-map function
� �3�8
��9� must first be calculated. Two possibilities are

� : �5< �3�8
��9� � $ @ 7 �3�8
��9�'$ or
� : ( < �3�8
��9� �=$ @A��BDCE�3�8
��9�-F 7 �3�8
��9���'$ , where the latter is more robust in the

presence of noise. Other more complicated noise-removal techniques such as median filtering, morpholog-

ical filtering, and anisotropic diffusion could also be used to improve the underlying edge map. Given an

edge-map function and an approximation to its gradient, GVF is computed in the usual way as in the binary

case.

Fig. 5a shows a gray-level image of the U-shaped object corrupted by additive white Gaussian noise; the

signal-to-noise ratio is 6 dB. Fig. 5b shows an edge-map computed using
� �3�8
��9� � � : ( < �3�8
��9� with � � ��� �

pixels, and Fig. 5c shows the computed GVF field. It is evident that the stronger edge-map gradients are

retained while the weaker gradients are smoothed out. Superposed on the original image, Fig. 5d shows a

sequence of GVF deformable contours (plotted in a shade of gray) and the GVF deformable contour result

(plotted in white). The result shows an excellent convergence to the boundary, despite the initialization from

far away, the image noise, and the boundary concavity.

Another demonstration of GVF applied to gray-scale imagery is shown in Fig. 6. Fig. 6a shows a

magnetic resonance image (short-axis section) of the left ventrical of a human heart, and Fig. 6b shows an

edge map computed using
� �3�8
��9� � � : ( < �3�8
��9� with � � !

� � . Fig. 6c shows the computed GVF, and Fig. 6d

shows a sequence of GVF deformable contours (plotted in a shade of gray) and the GVF deformable contour

result (plotted in white), both overlaid on the original image. Clearly, many details on the endocardial border
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are captured by the GVF deformable contour result, including the papillary muscles (the bumps that protrude

into the cavity).

5 3-D GVF Deformable Models and Results

Both the GVF and the deformable contour formulations can be readily extended into 3-D. In fact, 3-D

GVF has the identical formulation as the 2-D GVF described in Eq. (11) since it is written in a dimension-

independent form. Examples of work on 3-D deformable models known also as deformable surfaces can be

found in [5, 15].

Fig. 7 shows an experiment using a GVF deformable surface on a simulated 3-D image created on a 64 �

grid. The object to be reconstructed, rendered using an isosurface algorithm, is shown in Fig. 7a. The 3-D

GVF field was computed using a numerical scheme similar to the one of 2-D with � � ��� � � . This GVF

result on the two planes shown in Fig. 7b, is shown projected onto these planes in Figs. 7c and d. The same

characteristics observed in 2-D GVF field are apparent here as well. A deformable surface using 3-D GVF

was initialized as the sphere shown in Fig. 7e, which is neither entirely inside nor entirely outside the object.

Intermediate results after 10 and 40 iterations of the deformable surface algorithm are shown in Figs. 7f

and g. The final result after 100 iterations is shown in Fig. 7h. The resulting surface is smoother than the

isosurface rendering because of the internal forces in the deformable surface model.

Fig. 8 shows an example of using the GVF deformable surface to reconstruct a surface representation

of the central layer of the human cerebral cortex from a 3-D MR brain image. Details of this work can be

found in [21, 20].

6 Conclusions

We have introduced a novel external force model for deformable models, which we called the gradient

vector flow (GVF) field. The field is calculated as a diffusion of the gradient vectors of a gray-level or

binary edge map. We have shown that it allows for flexible initialization of the deformable model and

encourages convergence to boundary concavities.
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Further investigations into the nature and uses of GVF are warranted. In particular, a complete charac-

terization of the capture range of the GVF field would help in deformable model initialization procedures.

It would also help to more fully understand the GVF-I parameter � and the GVF-II parameter
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finding a way to choose them optimally for a particular image, and to understand the interplay between

the GVF parameters and the deformable model parameters " and + . Also, the GVF framework might be

useful in defining new connections between parametric and geometric deformable models, and might form

the basis for a new geometric deformable model. Finally, making connections between GVF with other

applications in image processing, computer vision, and medical imaging might provide some new insights

or even new solutions to existing problems.
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(a) (b) (c)

Figure 2: (a) The convergence of a deformable contour using (b) distance potential forces, (c) shown close-
up within the boundary concavity.

(a) (b) (c)

Figure 3: (a) The convergence of a deformable contour using (b) GVF external forces, (c) shown close-up
within the boundary concavity.
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) A square with a long, thin indentation and broken boundary; (b) GVF-I field (zoomed); (c)
GVF-II field (zoomed); (d) initial contour position for both the GVF-I deformable contour and the GVF-II
deformable contour; (e) final result of the GVF-I deformable contour; and (f) final result of the GVF-II
deformable contour.
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(a) (b)

(c) (d)

Figure 5: (a) A noisy ��� � ��� -pixel image of a U-shaped object; (b) the edge map $ @A��B C F 7 �'$ ( with � � ��� � ;
(c) the GVF external force field; and (d) convergence of the GVF deformable contour.
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(a) (b)

(c) (d)

Figure 6: (a) A � � � � � � � -pixel magnetic resonance image of the left ventrical of a human heart; (b) the
edge map $ @A��BDC;F 7 �'$ with � � !

� � ; (c) the GVF field (shown subsampled by a factor of two); and (d)
convergence of the GVF deformable contour.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: (a) Isosurface of a 3-D object defined on a

� � �

grid; (b) positions of planes A and B on which the 3-D GVF vectors are depicted in (c) and
(d), respectively; (e) the initial configuration of a deformable surface using GVF and its positions after (f) 10, (g) 40, and (h) 100 iterations.
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(a) (b) (c)

(d) (e) (f)

Figure 8: A surface rendering of reconstructed cortical surface from one subject displayed from multiple views: (a) top, (b) left, and (c) medial.
Cross-sectional views of the same reconstructed cortical surface superimposed on the extracranial-tissues removed MR brain images: (d) axial, (e)
coronal, and (f) sagittal.


