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Introduction 131

3.1 Introduction

In the past four decades, computerized image segmentation has played an in-
creasingly important role in medical imaging. Segmented images are now used
routinely in a multitude of different applications, such as the quantification of tissue
volumes [1], diagnosis [2], localization of pathology [3], study of anatomical struc-
ture [4, 5], treatment planning [6], partial volume correction of functional imaging
data [7], and computer-integrated surgery [8, 9]. Image segmentation remains a
difficult task, however, due to both the tremendous variability of object shapes and
the variation in image quality (see Fig. 3.1). In particular, medical images are often
corrupted by noise and sampling artifacts, which can cause considerable difficul-
ties when applying classical segmentation techniques such as edge detection and
thresholding. As a result, these techniques either fail completely or require some
kind of postprocessing step to remove invalid object boundaries in the segmentation
results.

To address these difficulties, deformable models have been extensively stud-
ied and widely used in medical image segmentation, with promising results. De-
formable models are curves or surfaces defined within an image domain that can
move under the influence of internal forces, which are defined within the curve or
surface itself, and external forces, which are computed from the image data. The
internal forces are designed to keep the model smooth during deformation. The ex-
ternal forces are defined to move the model toward an object boundary or other de-
sired features within an image. By constraining extracted boundaries to be smooth
and incorporating other prior information about the object shape, deformable mod-
els offer robustness to both image noise and boundary gaps and allow integrating
boundary elements into a coherent and consistent mathematical description. Such
a boundary description can then be readily used by subsequent applications. More-
over, since deformable models are implemented on the continuum, the resulting
boundary representation can achieve subpixel accuracy, a highly desirable prop-
erty for medical imaging applications. Figure 3.2 shows two examples of using
deformable models to extract object boundaries from medical images. The result is
a parametric curve in Fig. 3.2(a) and a parametric surface in Fig. 3.2(b).

Although the term deformable models first appeared in the work by Terzopou-
los and his collaborators in the late eighties [12–15], the idea of deforming a tem-
plate for extracting image features dates back much farther, to the work of Fis-
chler and Elschlager’s spring-loaded templates [16] and Widrow’s rubber mask
technique [17]. Similar ideas have also been used in the work by Blake and Zis-
serman [18], Grenander et al. [19], and Miller et al. [20]. The popularity of de-
formable models is largely due to the seminal paper “Snakes: Active Contours” by
Kass, Witkin, and Terzopoulos [13]. Since its publication, deformable models have
grown to be one of the most active and successful research areas in image seg-
mentation. Various names, such as snakes, active contours or surfaces, balloons,
and deformable contours or surfaces, have been used in the literature to refer to
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(a) (b)

Figure 3.1: Variability of object shapes and image quality. (a) A 2D MR image of the heart

left ventricle and (b) a 3D MR image of the brain.

(a) (b)

Figure 3.2: Examples of using deformable models to extract object boundaries from medical

images. (a) An example of using a deformable contour to extract the inner wall of the left

ventricle of a human heart from a 2D MR image. The circular initial deformable contour is

plotted in gray and the final converged result is plotted in white [10]. (b) An example of using

a deformable surface to reconstruct the brain cortical surface from a 3D MR image [11].

deformable models.
There are basically two types of deformable models: parametric deformable

models (cf. [13, 21–23]) and geometric deformable models (cf. [24–27]). Paramet-
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ric deformable models represent curves and surfaces explicitly in their paramet-
ric forms during deformation. This representation allows direct interaction with
the model and can lead to a compact representation for fast real-time implemen-
tation. Adaptation of the model topology, however, such as splitting or merging
parts during the deformation, can be difficult using parametric models. Geomet-
ric deformable models, on the other hand, can handle topological changes natu-
rally. These models, based on the theory of curve evolution [28–31] and the level
set method [32, 33], represent curves and surfaces implicitly as a level set of a
higher-dimensional scalar function. Their parameterizations are computed only
after complete deformation, thereby allowing topological adaptivity to be easily
accommodated. Despite this fundamental difference, the underlying principles of
both methods are very similar.

This chapter is organized as follows. We first introduce parametric deformable
models in Section 3.2, and then describe geometric deformable models in Sec-
tion 3.3. An explicit mathematical relationship between parametric deformable
models and geometric deformable models is presented in Section 3.3.4. In Sec-
tion 3.4, we provide an overview of several extensions to these deformable models.
Finally, in Section 3.5, we conclude the chapter and point out future research di-
rections. We focus on describing the fundamentals of deformable models and their
application to image segmentation. Treatment of related work using deformable
models in other applications such as image registration and motion estimation is
beyond the scope of this chapter. We refer readers interested in these other appli-
cations to Section 3.6, where suggestions for further reading are given.

We note that although this chapter primarily deals with 2D deformable models
(i.e., deformable contours), the principles discussed here apply to 3D deformable
models (i.e., deformable surfaces) as well (cf. [23, 34]).

3.2 Parametric deformable models

In this section, we first describe two different types of formulations for para-
metric deformable models: an energy minimizing formulation and a dynamic force
formulation. Although these two formulations lead to similar results, the first for-
mulation has the advantage that its solution satisfies a minimum principle whereas
the second formulation has the flexibility of allowing the use of more general types
of external forces. We then present several commonly used external forces that can
effectively attract deformable models toward the desired image features. A numer-
ical implementation of 2D deformable models or deformable contours is described
at the end of this section. Since the implementation of 3D deformable models or
deformable surfaces is more sophisticated than those of deformable contours, we
provide several references in Section 3.2.4 for additional reading rather than pre-
senting an actual implementation.
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Figure 3.3: A potential energy function derived from Fig. 3.1(a).

3.2.1 Energy minimizing formulation

The basic premise of the energy minimizing formulation of deformable con-
tours is to find a parameterized curve that minimizes the weighted sum of inter-
nal energy and potential energy. The internal energy specifies the tension or the
smoothness of the contour. The potential energy is defined over the image domain
and typically possesses local minima at the image intensity edges occurring at ob-
ject boundaries (see Fig. 3.3). Minimizing the total energy yields internal forces
and potential forces. Internal forces hold the curve together (elasticity forces)
and keep it from bending too much (bending forces). External forces attract the
curve toward the desired object boundaries. To find the object boundary, paramet-
ric curves are initialized within the image domain, and are forced to move toward
the potential energy minima under the influence of both these forces.

Mathematically, a deformable contour is a curve ���� � ������ � ����, � �
��� ��, which moves through the spatial domain of an image to minimize the follow-
ing energy functional:

���� � ���� � ���� � (3.1)

The first term is the internal energy functional and is defined to be

���� �
�

�

� �

�

����

��������
����
�

� ����

����������
����
�

�� � (3.2)

The first-order derivative discourages stretching and makes the model behave like
an elastic string. The second-order derivative discourages bending and makes the
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model behave like a rigid rod. The weighting parameters ���� and ���� can be used
to control the strength of the model’s tension and rigidity, respectively. In practice,
���� and ���� are often chosen to be constants.

The second term is the potential energy functional and is computed by integrat-
ing a potential energy function 	 �
� �� along the contour����:

���� �

� �

�

	 �������� � (3.3)

The potential energy function 	 �
� �� is derived from the image data and takes
smaller values at object boundaries as well as other features of interest. Given
a gray-level image ��
� �� viewed as a function of continuous position variables
�
� ��, a typical potential energy function designed to lead a deformable contour
toward step edges is

	 �
� �� � �
� ������
� �� � ��
� ����
� � (3.4)

where 
� is a positive weighting parameter, ���
� �� is a two-dimensional Gaus-
sian function with standard deviation �, � is the gradient operator, and � is the
2D image convolution operator. If the desired image features are lines, then the
appropriate potential energy function can be defined as follows:

	 �
� �� � 
�����
� �� � ��
� ��� � (3.5)

where
� is a weighting parameter. Positive
� is used to find black lines on a white
background, while negative 
� is used to find white lines on a black background.
For both edge and line potential energies, increasing � can broaden its attraction
range. However, larger � can also cause a shift in the boundary location, resulting
in a less accurate result (this problem can be addressed by using potential energies
calculated with different values of �; see Section 3.2.3).

Regardless of the selection of the exact potential energy function, the proce-
dure for minimizing the energy functional is the same. The problem of finding
a curve ���� that minimizes the energy functional � is known as a variational
problem [35]. It has been shown that the curve that minimizes � must satisfy the
following Euler-Lagrange equation [13, 22]:

�

��

�
�
��

��

�
�

��

���

�
�
���

���

�
��	 ��� � � � (3.6)

To gain some insight about the physical behavior of deformable contours, we can
view Eq. (3.6) as a force balance equation

� ������ � � ������ � � � (3.7)
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where the internal force is given by
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�
(3.8)

and the potential force is given by

� ������ � ��	 ��� � (3.9)

The internal force� ��� discourages stretching and bending while the potential force
� ��� pulls the contour toward the desired object boundaries. In this chapter, we
define the forces, derived from the potential energy function 	 �
� �� given in either
Eq. (3.4) or Eq. (3.5), as Gaussian potential forces.

To find a solution to Eq. (3.6), the deformable contour is made dynamic by
treating ���� as a function of time � as well as � — i.e., ���� ��. The partial
derivative of � with respect to � is then set equal to the left-hand side of Eq. (3.6)
as follows:
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���

�
��	 ��� � (3.10)

The coefficient � is introduced to make the units on the left side consistent with
the right side. When the solution ���� �� stabilizes, the left side vanishes and we
achieve a solution of Eq. (3.6). We note that this approach of making the time
derivative term vanish is equivalent to applying a gradient descent algorithm to find
the local minimum of Eq. (3.1) [34]. Thus, the minimization is solved by placing
an initial contour on the image domain and allowing it to deform according to
Eq. (3.10). Figure 3.4 shows an example of recovering the left ventricle wall using
Gaussian potential forces.

3.2.2 Dynamic force formulation

In the previous section, the deformable model was modeled as a static problem,
and an artificial variable � was introduced to minimize the energy. It is sometimes
more convenient, however, to formulate the deformable model directly from a dyn-
amic problem using a force formulation. Such a formulation permits the use of
more general types of external forces that are not potential forces, i.e., forces that
cannot be written as the negative gradient of potential energy functions. According
to Newton’s second law, the dynamics of a contour���� �� must satisfy

�
���

���
� � �	
���� � � ������ � � ������ � (3.11)

where � is a coefficient that has a mass unit and � �	
� is the damping (or viscous)
force defined as �������, with � being the damping coefficient. In image seg-
mentation, the mass coefficient � in front of the inertial term is often set to zero,
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(a)

(b)

Figure 3.4: An example of recovering the left ventricle wall using Gaussian potential forces.

(a) Gaussian potential forces and (b) the result of applying Gaussian potential forces to a

deformable contour, with the circular initial contour shown in gray and the final deformed

contour in white.
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since the inertial term may cause the contour to pass over the weak edges. The
dynamics of the deformable contour without the inertial term becomes

�
��

��
� � ������ � � ������ � (3.12)

The internal forces are the same as specified in Eq. (3.8). The external forces can
be either potential forces or nonpotential forces. We note, however, nonpotential
forces cannot be derived from the variational energy formulation of the previous
section. An alternate variational principle does exist (see [36]); however, it is not
physically intuitive.

External forces are often expressed as the superposition of several different
forces:

� ������ � � ���� � � ���� � � � �� �� ��� �

where � is the total number of external forces. This superposition formulation
allows the external forces to be broken down into more manageable terms. For
example, one might define the external forces to be composed of both Gaussian
potential forces and pressure forces, which are described in the next section.

3.2.3 External forces

In this section, we describe several kinds of external forces for deformable
models. These external forces are applicable to both deformable contours and de-
formable surfaces.

Multiscale Gaussian potential force
When using the Gaussian potential force described in Section 3.2.1, � must

be selected to have a small value in order for the deformable model to follow the
boundary accurately. As a result, the Gaussian potential force can only attract the
model toward the boundary when it is initialized nearby. To remedy this problem,
Terzopoulos, Witkin, and Kass [13, 15] proposed using Gaussian potential forces
at different scales to broaden its attraction range while maintaining the model’s
boundary localization accuracy. The basic idea is to first use a large value of � to
create a potential energy function with a broad valley around the boundary. The
coarse-scale Gaussian potential force attracts the deformable contour or surface
toward the desired boundaries from a long range. When the contour or surface
reaches equilibrium, the value of � is then reduced to allow tracking of the bound-
ary at a finer scale. This scheme effectively extends the attraction range of the
Gaussian potential force. A weakness of this approach, however, is that there is
no established theorem for how to schedule changes in �. The ad hoc scheduling
schemes that are available may therefore lead to unreliable results.

Pressure force
Cohen [22] proposed to increase the attraction range by using a pressure force

together with the Gaussian potential force. The pressure force can either inflate or
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deflate the model; hence, it removes the requirement to initialize the model near
the desired object boundaries. Deformable models that use pressure forces are also
known as balloons [22].

The pressure force is defined as

� ���� � 
����� � (3.13)

where ���� is the inward unit normal1 of the model at the point � and 
� is a
constant weighting parameter. The sign of 
� determines whether to inflate or de-
flate the model and is typically chosen by the user. Recently, region information has
been used to define 
� with a spatial-varying sign based upon whether the model
is inside or outside the desired object (see [37, 38]). The value of 
� determines
the strength of the pressure force. It must be carefully selected so that the pressure
force is slightly smaller than the Gaussian potential force at significant edges, but
large enough to pass through weak or spurious edges. When the model deforms,
the pressure force keeps inflating or deflating the model until it is stopped by the
Gaussian potential force. An example of using deformable contour with an inflat-
ing pressure force is shown in Fig. 3.5. A disadvantage in using pressure forces is
that they may cause the deformable model to cross itself and form loops (cf. [39]).

Distance potential force
Another approach for extending attraction range is to define the potential energy

function using a distance map as proposed by Cohen and Cohen [40]. The value
of the distance map at each pixel is obtained by calculating the distance between
the pixel and the closest boundary point, based either on Euclidean distance [41]
or Chamfer distance [42]. By defining the potential energy function based on the
distance map, one can obtain a potential force field that has a large attraction range.

Given a computed distance map ��
� ��, one way of defining a corresponding
potential energy, introduced in [40], is as follows:

	��
� �� � �
� 	
�����
� ��
�� � (3.14)

The corresponding potential force field is given by ��	��
� ��.

Gradient vector flow
The distance potential force is based on the principle that the model point

should be attracted to the nearest edge points. This principle, however, can cause
difficulties when deforming a contour or surface into boundary concavities [43].
A 2D example is shown in Fig. 3.6, where a U-shaped object and a close-up of
its distance potential force field within the boundary concavity is depicted. Notice

1In the parametric formulation of deformable models, the normal direction is sometimes assumed
to be outward. Here we assume an inward direction for consistency with the geometric formulation
of deformable models introduced in Section 3.3.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: An example of pressure forces driven deformable contours. (a) Intensity CT

image slice of the left ventricle. (b) Edge detected image. (c) Initial deformable contour. (d)-

(f) Deformable contour moving toward the left ventricle boundary, driven by inflating pressure

force. Images courtesy of McInerney and Terzopoulos [23], The University of Toronto.

that at the concavity, distance potential forces point horizontally in opposite direc-
tions, thus preventing the contour from converging into the boundary concavity. To
address this problem, Xu and Prince [10, 43] employed a vector diffusion equa-
tion that diffuses the gradient of an edge map in regions distant from the boundary,
yielding a different force field called the gradient vector flow (GVF) field. The
amount of diffusion adapts according to the strength of edges to avoid distorting
object boundaries.

A GVF field is defined as the equilibrium solution to the following vector partial
differential equation:

��

��
� ����� ����� � ����� ���� ���� � (3.15)

where ��
� �� �� � �� , ����� denotes the partial derivative of ��
� �� �� with
respect to �, �� is the Laplacian operator (applied to each spatial component of
� separately), and � is an edge map that has higher value at the desired object
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(a) (b) (c)

Figure 3.6: An example of distance potential force field. (a) A U-shaped object, a close-up

of its (b) boundary concavity, and (c) the distance potential force field within the concavity.

boundary and can be derived using any edge detector. The definition of the GVF
field is valid for any dimension. Two examples of ���� and ���� are

���� � 	
�	�������


���� � �� ���� �

where � is a scalar and � is a dummy variable, or

���� � �

���� � �� �

where � is a positive scalar. GVF has been shown to have a large attraction range
and improved convergence for deforming contours into boundary concavities [10,
43]. An example of using a GVF force field is shown in Fig. 3.7.

Dynamic distance force
An external force that is similar to distance potential force but does not pos-

sess the boundary concavity problem has been proposed [44, 45]. This approach
derives an external force by computing a signed distance at each point on the de-
formable contour or surface. This signed distance is calculated by determining the
closest boundary point or other image feature along the model’s normal direction.
The distance values are recomputed each time the model is deformed. Several cri-
teria can be used to define the desired boundary point to be searched. The most
common one is to use image pixels that have a high image intensity gradient mag-
nitude or edge points generated by an edge detector. A threshold is specified for
the maximum search distance to avoid confusion with outliers and to reduce the
computation time. The resulting force, which we refer to as the dynamic distance
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(a)

(b)

Figure 3.7: An example of the gradient vector flow driven deformable contours. (a) A

gradient vector flow force field and (b) the result of applying gradient vector flow force to a

deformable contour, with the circular initial contour shown in gray and the final deformed

contour in white.
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force, can attract deformable models to the desired image feature from a fairly long
range limited only by the threshold.

Given a point � on the contour or surface, its inward unit normal ����,
the computed signed distance ����, and a specified distance threshold �
	�, a
typical definition for the dynamic distance force is

����� � 
�
����

�
	�

���� � (3.16)

The weakness of this method is that a relatively time-consuming 1D search
along the normal direction must be performed each time the model deforms. Setting
the search distance threshold lower can reduce the run time but has the undesirable
side effect of decreasing the attraction range of the dynamic distance force.

Interactive force
In many clinical situations, it is important to allow an operator to interact with

the deformable model as it is deforming. This interaction improves the accuracy of
the segmentation result when automated external forces fail to deform the model
to the desired feature in certain regions. For example, the user may want to pull
the model toward significant image features, or would like to constrain the model
so that it must pass through a set of landmark points identified by an expert. De-
formable models allow these kinds of user interactions to be conveniently modeled
as additional force terms.

Two kinds of commonly used interactive forces are spring forces and volcano
forces, proposed by Kass et al. [13]. Spring forces are defined to be proportional to
the distance between a point � on the model and a user-specified point �:

� � � 
������ � (3.17)

Spring forces act to pull the model toward �. The further away the model is from
�, the stronger the pulling force. The point � is selected by finding the closest
point on the model to � using a heuristic search around a local neighborhood of �.
An example of using spring forces is shown in Fig. 3.8.

Volcano forces are designed to push the model away from a local region around
a “volcano” point �. For computational efficiency, the force is only computed in a
neighborhood � ��� as follows:

� ���� �

�

�

�
���� � � � ���

� � �� � ���
� (3.18)

where � � � � �. Note that the magnitude of the forces is limited near � � � to
avoid numerical instability. Another possible definition for volcano forces is

� ���� �

�

� 	
���

����
���

� ���� � � � ���

� � �� � ���
� (3.19)

where �� is used to adjust the strength distribution of the volcano force.
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(a) (b)

Figure 3.8: Example of interactive forces. (a) A CT image slice of a canine left ventricle. (b)

A deformable contour moves toward high gradients in the edge detected image, influenced

by landmark points near the center of the image and a spring force that pulls the contour

toward an edge at the bottom right. Image courtesy of McInerney and Terzopoulos [23], The

University of Toronto.

3.2.4 Numerical implementation

Various numerical implementations of deformable models have been reported
in the literature. For examples, the finite difference method [13], dynamic program-
ming [21], and greedy algorithm [46] have been used to implement deformable con-
tours, while finite difference methods [15] and finite element methods [23, 34, 47]
have been used to implement deformable surfaces. The finite difference method re-
quires only local operations and is efficient to compute. The finite element method,
on the other hand, is more costly to compute but has the advantage of being well
adapted to the irregular mesh representations of deformable surfaces. In this sec-
tion, we present the finite difference method implementation for deformable con-
tours as described in [13].

Since the numerical scheme proposed by [13] does not require external forces
to be potential forces, it can be used to implement deformable contours using ei-
ther potential forces or nonpotential forces. By approximating the derivatives in
Eq. (3.12) with finite differences, and converting to the vector notation



Parametric deformable models 145

�	

 � ��	


 � �
	

 � � ������ ����� � ���� �����, we can rewrite Eq. (3.12) as
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 �(3.20)

where � is the damping coefficient, �
 � �����, �
 � �����, � the step size in
space, and �� the step size in time. In general, the external force � ��� is stored as a
discrete vector field, i.e., a finite set of vectors defined on an image grid. The value
of � ��� at any location � 
 can be obtained through a bilinear interpolation of the
external force values at the grid points near � 
.

Equation (3.20) can be written in a compact matrix form as

�	 ��	��

�
� ��	 � � �����

	��� � (3.21)

where � � ����, �	, �	��, and � �����
	��� are � � � matrices, and � is an

� �� pentadiagonal banded matrix with � being the number of sample points.
Equation (3.21) can then be solved iteratively by matrix inversion using the follow-
ing equation:

�	 � �� � �������	�� � �� �����
	���� � (3.22)

The inverse of the matrix � � �� can be calculated efficiently by LU decom-
position2. The decomposition needs only to be performed once for deformation
processes that do not alter the elasticity or rigidity parameters.

3.2.5 Discussion

So far, we have formulated the deformable model as a continuous curve or
surface. In practice, however, it is sometimes more straightforward to design the
deformable models from a discrete point of view. Example of work in this area
includes [48–53].

Parametric deformable models have been applied successfully in a wide range
of applications; however, they have two main limitations. First, in situations where
the initial model and the desired object boundary differ greatly in size and shape,
the model must be reparameterized dynamically to faithfully recover the object
boundary. Methods for reparameterization in 2D are usually straightforward and
require moderate computational overhead. Reparameterization in 3D, however, re-
quires complicated and computationally expensive methods. The second limitation

2LU decomposition stands for Lower and Upper triangular decomposition, a well-known tech-
nique in linear algebra.
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with the parametric approach is that it has difficulty dealing with topological adap-
tation such as splitting or merging model parts, a useful property for recovering ei-
ther multiple objects or an object with unknown topology. This difficulty is caused
by the fact that a new parameterization must be constructed whenever the topology
change occurs, which requires sophisticated schemes [54, 55].

3.3 Geometric deformable models

Geometric deformable models, proposed independently by Caselles et al. [24]
and Malladi et al. [25], provide an elegant solution to address the primary limita-
tions of parametric deformable models. These models are based on curve evolution
theory [28–31] and the level set method [32, 33]. In particular, curves and sur-
faces are evolved using only geometric measures, resulting in an evolution that
is independent of the parameterization. As in parametric deformable models, the
evolution is coupled with the image data to recover object boundaries. Since the
evolution is independent of the parameterization, the evolving curves and surfaces
can be represented implicitly as a level set of a higher-dimensional function. As a
result, topology changes can be handled automatically.

In this section, we first review the fundamental concepts in curve evolution the-
ory and the level set method. We next present three types of geometric deformable
models, the difference being in the design of speed functions. We then show a
mathematical relationship between a particular class of parametric and geometric
models. Next, we describe a numerical implementation of geometric deformable
models proposed by Osher and Sethian [32] in Section 3.3.5. Finally, at the end of
this section we compare geometric deformable models with parametric deformable
models. We note that although the geometric deformable models are presented
in 2D, their formulation can be directly extended to 3D. A thorough treatment on
evolving curves and surfaces using the level set representation can be found in [33].

3.3.1 Curve evolution theory

The purpose of curve evolution theory is to study the deformation of curves
using only geometric measures such as the unit normal and curvature as opposed
to the quantities that depend on parameters such as the derivatives of an arbitrary
parameterized curve. Let us consider a moving curve ���� �� � ����� ��� � ��� ���,
where � is any parameterization and � is the time, and denote its inward unit normal
as � and its curvature as �, respectively. The evolution of the curve along its
normal direction can be characterized by the following partial differential equation:

��

��
� � ���� � (3.23)

where � ��� is called speed function, since it determines the speed of the curve
evolution. We note that a curve moving in some arbitrary direction can always be
reparameterized to have the same form as Eq. (3.23) [56]. The intuition behind this
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fact is that the tangent deformation affects only the curve’s parameterization, not
its shape and geometry.

The most extensively studied curve deformations in curve evolution theory are
curvature deformation and constant deformation. Curvature deformation is given
by the so-called geometric heat equation

��

��
� ��� �

where � is a positive constant. This equation will smooth a curve, eventually
shrinking it to a circular point [57]. The use of the curvature deformation has
an effect similar to the use of the elastic internal force in parametric deformable
models.

Constant deformation is given by

��

��
� ��� �

where �� is a coefficient determining the speed and direction of deformation. Con-
stant deformation plays the same role as the pressure force in parametric deformable
models. The properties of curvature deformation and constant deformation are
complementary to each other. Curvature deformation removes singularities by
smoothing the curve, while constant deformation can create singularities from an
initially smooth curve.

The basic idea of the geometric deformable model is to couple the speed of
deformation (using curvature and/or constant deformation) with the image data, so
that the evolution of the curve stops at object boundaries. The evolution is im-
plemented using the level set method. Thus, most of the research in geometric
deformable models has been focused in the design of speed functions. We review
several representative speed functions in Section 3.3.3.

3.3.2 Level set method

We now review the level set method for implementing curve evolution. The
level set method is used to account for automatic topology adaptation, and it also
provides the basis for a numerical scheme that is used by geometric deformable
models. The level set method for evolving curves is due to Osher and Sethian [32,
58, 59].

In the level set method, the curve is represented implicitly as a level set of a 2D
scalar function — referred to as the level set function — which is usually defined
on the same domain as the image. The level set is defined as the set of points that
have the same function value. Figure 3.9 shows an example of embedding a curve
as a zero level set. It is worth noting that the level set function is different from the
level sets of images, which are sometimes used for image enhancement [60]. The
sole purpose of the level set function is to provide an implicit representation of the
evolving curve.
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(a) (b) (c)

Figure 3.9: An example of embedding a curve as a level set. (a) A single curve. (b) The

level set function where the curve is embedded as the zero level set (in black). (c) The

height map of the level set function with its zero level set depicted in black.

Figure 3.10: From left to right, the zero level set splits into two curves while the level set

function still remains a valid function.

Instead of tracking a curve through time, the level set method evolves a curve by
updating the level set function at fixed coordinates through time. This perspective
is similar to that of an Eulerian formulation of motion as opposed to a Lagrangian
formulation, which is analogous to the parametric deformable model. A useful
property of this approach is that the level set function remains a valid function
while the embedded curve can change its topology. This situation is depicted in
Fig 3.10.

We now derive the level set embedding of the curve evolution equation (3.23).
Given a level set function  �
� �� �� with the contour ���� �� as its zero level set,
we have

 ����� ��� �� � � �

Differentiating the above equation with respect to � and using the chain rule, we



Geometric deformable models 149

obtain

� 

��
�� �

��

��
� � � (3.24)

where � denotes the gradient of  .
We assume that  is negative inside the zero level set and positive outside.

Accordingly, the inward unit normal to the level set curve is given by

� � �
� 

�� �
� (3.25)

Using this fact and Eq. (3.23), we can rewrite Eq. (3.24) as

� 

��
� � ����� � � (3.26)

where the curvature � at the zero level set is given by

� � � �
� 

�� �
�
 �� 

�
� � � � � �� �  �� 

�
�

� �� �  ���
�
�

� (3.27)

The relationship between Eq. (3.23) and Eq. (3.26) provides the basis for perform-
ing curve evolution using the level set method.

Three issues need to be considered in order to implement geometric deformable
contours:

1. An initial function  �
� �� � � �� must be constructed such that its zero level
set corresponds to the position of the initial contour. A common choice is
to set  �
� �� �� � ��
� ��, where ��
� �� is the signed distance from each
grid point to the zero level set. The computation of the signed distance for an
arbitrary initial curve is expensive. Recently, Sethian and Malladi developed
a method called the fast marching method, which can construct the signed
distance function in !�� 
����, where � is the number of pixels. Certain
situations may arise, however, where the distance may be computed much
more efficiently. For example, when the zero level set can be described by
the exterior boundary of the union of a collection of disks, the signed distance
function can be computed in !��� as

���� � ���

�������� ��

���� 	
� � �
� �

where � � �
� ��, " is the number of initial disks, 	
 and �
 are the center
and radius of each disk.

2. Since the evolution equation (3.26) is derived for the zero level set only, the
speed function � ���, in general, is not defined on other level sets. Hence,
we need a method to extend the speed function � ��� to all of the level sets.
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We note that the expressions for the unit normal and the curvature, however,
hold for all level sets. Many approaches for such extensions have been de-
veloped (see [33] for a detailed discussion on this topic). However, the level
set function that evolves using these extended speed functions can lose its
property of being a signed distance function, causing inaccuracy in curvature
and normal calculations. As a result, reinitialization of the level set function
to a signed distance function is often required for these schemes. Recently, a
method that does not suffer from this problem was proposed by Adalsteins-
son and Sethian [61]. This method casts the speed extension problem as a
boundary value problem, which can then be solved efficiently using the fast
marching method.

3. In the application of geometric contours, constant deformation is often used
to account for large-scale deformation and narrow boundary indentation and
protrusion recovery. Constant deformation, however, can cause the formation
of sharp corners from an initial smooth zero level set. Once the corner is
developed, it is not clear how to continue the deformation, since the definition
of the normal direction becomes ambiguous. A natural way to continue the
deformation is to impose the so-called entropy condition originally proposed
in the area of interface propagation by Sethian [62]. In Section 3.3.5, we
describe an entropy satisfying numerical scheme, proposed by Osher and
Sethian [32], which implements geometric deformable contours.

3.3.3 Speed functions

In this section, we provide a brief overview of three examples of speed func-
tions used by geometric deformable contours.

The geometric deformable contour formulation, proposed by Caselles et al. [24]
and Malladi et al. [25], takes the following form:

� 

��
� #��� ����� � � (3.28)

where

# �
�

� � ����� � ���
� (3.29)

Positive �� shrinks the curve, and negative �� expands the curve. The curve evolu-
tion is coupled with the image data through a multiplicative stopping term #. This
scheme can work well for objects that have good contrast. However, when the ob-
ject boundary is indistinct or has gaps, the geometric deformable contour may leak
out because the multiplicative term only slows down the curve near the boundary
rather than completely stopping the curve. Once the curve passes the boundary, it
will not be pulled back to recover the correct boundary.
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Figure 3.11: Contour extraction of cyst form ultrasound breast image via merging multiple

initial level sets. Images courtesy of Yezzi [63], Georgia Institute of Technology.

To remedy the latter problem, Caselles et al. [26,64] and Kichenassamy et al. [63,
65] used an energy minimization formulation to design the speed function. This
leads to the following geometric deformable contour formulation:

� 

��
� #��� ����� ���# � � � (3.30)

Note that the resulting speed function has an extra stopping term �# � � that can
pull back the contour if it passes the boundary. This term behaves in similar fashion
to the Gaussian potential force in the parametric formulation. An example of using
this type of geometrical deformable contours is shown in Fig. 3.11.

The latter formulation can still generate curves that pass through boundary
gaps. Siddiqi et al. [66] partially address this problem by altering the constant
speed term through energy minimization, leading to the following geometric de-
formable contour:

� 

��
� $�#��� ���# � � � � �#�

�

�
� � �#��� � � (3.31)

In this case, the constant speed term �� in Eq. (3.30) is replaced by the second
term, and the term �

�
� � �# provides additional stopping power that can prevent

the geometrical contour from leaking through small boundary gaps. The second
term can be used alone as the speed function for shape recovery as well. Figure 3.12
shows an example of this deformable contour model. Although this model is robust
to small gaps, large boundary gaps can still cause problems.
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Figure 3.12: Segmentation of the brain using only the second term in (3.31). Left to right

and top to bottom: iterations 1, 400, 800, 1200, and 1600. Images courtesy of Siddiqi [66],

McGill University.

At this time, there is no geometric deformable contour model possessing the
property of convergence to both perceptual boundaries (large boundary gaps) and
boundary concavities as there are in parametric deformable contours [43].

3.3.4 Relationship to parametric deformable models

In the previous section, we described three types of geometric deformable con-
tours that behave similarly to the parametric deformable contours but have the ad-
vantage of being able to change their topology automatically. The relationship be-
tween parametric deformable contours and geometric deformable contours can be
formulated more precisely. Through an energy minimization formulation, Caselles
et al. [64] showed that the geometric deformable contour in Eq. (3.30) is equiva-
lent to the parametric deformable contour without the rigidity term. This derivation
only permits the use of a speed function induced by a potential force, a property
shared by almost all the geometric deformable models. In this section, we derive an
explicit mathematical relationship between a dynamic force formulation of para-
metric deformable models and a geometric deformable model formulation, thus
permitting the use of speed functions derived from nonpotential forces, i.e., forces
that cannot be expressed as the negative gradient of potential energy functions.
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For the convenience of derivation, we consider a simplified but more commonly
used dynamic force formulation for parametric deformable contours:

�
��

��
� �

���

���
� � ���� � � ������ � (3.32)

Note that since the use of a pressure force � � � 
�� can cause singularities dur-
ing deformation and requires special numerical implementation, we have separated
it from the rest of the external forces. To represent Eq. (3.32) using a level set
representation, we need to recast this formulation into the standard curve evolution
form defined in Eq. (3.23). The corresponding geometric deformable contour in
level set representation can then be obtained by using Eq. (3.26).

Since the contour’s tangential motion only affects its parameterization but not
its geometry, we modify Eq. (3.32) by considering only the normal components of
internal and external forces. Given a parameterized curve ���� ��, where � is the
arc-length parameterization of the curve, its inward unit normal � and curvature
�, we can use the fact that ������� � �� to rewrite Eq. (3.32) as follows:

��

��
� �%�� �� � 
 ��� ���� � (3.33)

where % � ���, �� � 
���, and 
 ��� � � �����. Here, we have divided through
by � so that both sides have units of velocity. If we let � ��� � %�����
 ��� �� ,
where� is given by Eq. (3.25), and substitute � ��� into Eq. (3.26), we obtain the
following geometric deformable contour evolution equation:

� 

��
� � ����� � � �%�� ����� � � 
 ��� � � � (3.34)

If we allow both % and �� to be functions defined on the image domain, then
Eq. (3.34) generalizes Eq. (3.31) and can be used to implement almost any para-
metric deformable model as a geometric deformable model.

3.3.5 Numerical implementation

In this section, we provide a numerical implementation that is adapted from [33]
for Eq. (3.34), in which % and �� are allowed to be functions. The spatial derivatives
are implemented using a special numerical scheme that can handle the formation
of sharp corners during deformation. The numerical implementation is given as
follows:
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where 
 ��� � �&� '�, and �	
�� is the central difference approximation to the cur-
vature expression given in Eq. (3.27). The first-order numerical derivatives and the
gradient of the level set function  are given by
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A detailed description of the principle behind this numerical method is de-
scribed in [33]. We note that more efficient implementations of geometric de-
formable models have been developed, including the particularly noteworthy
narrow-band level set method described in [25, 67].

3.3.6 Discussion

Although topological adaptation can be useful in many application, it can some-
times lead to undesirable results. Geometric deformable models may generate
shapes that have inconsistent topology with respect to the actual object, when ap-
plied to noisy images with significant boundary gaps. In these situations, the sig-
nificance of ensuring a correct topology is often a necessary condition for many
subsequent applications. For example, in the brain functional study using fMRI or
PET data, it is necessary to unfold the extracted cortical surface and create a flat or
spherical map so that a user can visualize the functional activation in deep buried
cortical regions (see [68, 69]). Parametric deformable models are better suited to
these applications because of their strict control on topology.

3.4 Extensions of deformable models

Numerous extensions have been proposed to the deformable models described
in the previous sections, particularly to extend the parametric deformable mod-
els. These extensions address two major areas for improving standard deformable
models. The first area is the incorporation of additional prior knowledge into the
models. Use of prior knowledge in a deformable model can lead to more robust
and accurate results. This is especially true in applications where a particular struc-
ture that requires delineation has similar shape across a large number of subjects.
Incorporation of prior knowledge requires a training step that involves manual in-
teraction to accumulate information on the variability of the object shape being
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delineated. This information is then used to constrain the actual deformation of the
contour or surface to extract shapes consistent with the training data.

The second area that has been addressed by various extensions of deformable
models is in modeling global shape properties. Traditional parametric and geo-
metric deformable models are local models — contours or surfaces are assumed
to be locally smooth. Global properties such as orientation and size are not ex-
plicitly modeled. Modeling of global properties can provide greater robustness to
initialization. Furthermore, global properties are important in object recognition
and image interpretation applications because they can be characterized using only
a few parameters. Note that although prior knowledge and global shape properties
are distinct concepts, they are often used in conjunction with one another. Global
properties tend to be much more stable than local properties. Therefore, if informa-
tion about the global properties is known a priori, it can be used to greatly improve
the performance of the deformable model.

In this section, we review several extensions of deformable models that use
prior knowledge and/or global shape properties. We focus on revealing the funda-
mental principles of each extension and refer the reader to the cited literature for a
full treatment of the topic.

3.4.1 Deformable Fourier models

In standard deformable models, a direct parameterization is typically utilized
for representing curves and surfaces. Staib and Duncan [70] have proposed using
a Fourier representation for parameterizing deformable contours and surfaces. A
Fourier representation for a closed contour is expressed as

���� �
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where (�� #�� (�� )�� #�� ��� � � � are Fourier coefficients. The Fourier coefficients of
���� are computed by
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and the coefficients of � ��� are computed in analogous fashion. Open contours
can also be parameterized using a straightforward modification of Eq. (3.36), as
described in [70].

The advantages of the Fourier representation are that a compact representation
of smooth shapes can be obtained by truncating the series and that a geometric
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description of the shape can be derived to characterize global shape properties.
From Eq. (3.36), the coefficients (� and #� define the translation of the contour.
Each subsequent term in the series expansion follows the parametric form of an
ellipse. It is possible to map the coefficients to a parameter set that describes the
object shape in terms of standard properties of ellipses [70]. Furthermore, like
the Fourier coefficients, these parameters follow a scale ordering, where low index
parameters describe global properties and higher indexed parameters describe more
local deformations.

Figure 3.13: Segmenting the corpus callosum from an MR midbrain sagittal image using

a deformable Fourier model. Top left: MR image (146�106). Top right: positive magnitude

of the Laplacian of the Gaussian (� � ���). Bottom left: initial contour (six harmonics).

Bottom right: final contour on the corpus callosum of the brain. Images courtesy of Staib

and Duncan [70], Yale University.

Staib and Duncan apply a Bayesian approach to incorporating prior informa-
tion into their model. A prior probability function is defined by first manually or
semi-automatically delineating structures of the same class as the structure to be
extracted. Next, these structures are parameterized using the Fourier coefficients,
or using the converted parameter set based on ellipses. Mean and variance statistics
are finally computed for each of the parameters.

Assuming independence between the parameters, the multivariate Gaussian
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prior probability function is given by
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� � (3.37)

where � � �-�� -�� � � � � -� � is the parameter vector derived by truncating the
Fourier coefficients3, �
 is the mean of the �th parameter in the training data, and
��
 is the variance. A posterior probability function is defined that balances the
prior probability model and a data model, which measures the discrepancy between
boundary features in the image and the deformable contour. In [70], a gradient
ascent method was used to maximize the posterior probability function. More re-
cently, a genetic algorithm was proposed in [71]. Figure 3.13 shows an example of
using the deformable Fourier model to recover the corpus callosum of the human
brain.

3.4.2 Deformable models using modal analysis

Another way to restrict the mostly unstructured motion associated with the stan-
dard deformable model is to use modal analysis (Pentland and Horowitz [72], Nas-
tar and Ayache [53]). This approach is similar to the deformable Fourier model
except that both the basis functions and the nominal values of their coefficients are
derived from a template object shape.

Deformable models based on modal analysis use the theory of finite elements
[73]. An object is assumed to be represented by a finite set of elements whose
positions are defined by the positions of � nodes, which are points in �-dimensional
space. The node positions can be stacked into a vector� , which has length ��, and
element interpolation characterizes the complete object shape on the continuum. If
the object moves or deforms, its new position is given by � � � , where � is a
vector of length �� representing the collection of nodal displacements.

The equation governing the object’s motion can be written as a collection of
ordinary differential equations constraining the nodal displacements. This is com-
pactly written as

�
���

���
�


��

��
��� � � �

where � , 
, and � are the mass, damping, and stiffness matrices of the sys-
tem and � is an ��-dimensional vector of external forces acting on the nodes.
Both � and � are assumed to be functions of time. Derivation of � , 
, and
� are described in the literature (cf. Pentland and Horowitz [72], Terzopoulos and
Metaxas [47]).

Solution of the generalized eigenvalue problem

��
 � .�
��


3Two modified definitions for the parameter vector were also proposed in [70].
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yields the modes �
 and eigenvalues .
, � � �� � � � � ��. The nodal displacements
can be written as

� � � �� �

where � is the (orthogonal) matrix whose columns comprise the modes and �� is a
vector of motion coefficients. The governing equation can then be written as
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� ��

��
� �� �� � ��� � (3.38)

where �� is a diagonal matrix having the eigenvalues corresponding to the modes
on its diagonal. It is customary to assume the Rayleigh condition, which implies
that ��
� is also a diagonal matrix. This decouples the equations in (3.38), leav-
ing �� equations to solve for the �� motion coefficients.

Shape variations are constrained and computation times are reduced by ap-
proximating the nodal positions using only the -� lower-order modes (those cor-
responding to the larger eigenvalues in ��). This is conceptually equivalent to
keeping the lowest-order Fourier coefficients, but this approximation does not nec-
essarily smooth the shape since sharp bends are still allowed if the lowest-order
modes possess such bends. In this case, the nodal positions become

� 
 ��
�� � (3.39)

where �� is the matrix consisting of the first -� columns of �, and �� is the vec-
tor comprising the first -� motion coefficients from �� . The governing equations
become
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where
� � ��
�
�, ��

� is the diagonal matrix comprising the first -� eigenvalues,
and

�� � ��
� � � (3.41)

To implement a deformable model using reduced modal analysis, we assume
that external forces � have been specified exactly as in standard deformable models
(see Section 3.2.3). We also assume that the initial displacements (from the tem-
plate object) are zero and the initial velocities are zero. Approximate integration
can then be accomplished using the explicit Euler scheme:
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where �� is a time step that must be chosen small enough for convergence and good
accuracy. The nodal displacements are given by Eq. (3.39) and the nodal positions
are given by � � � . Using this information, the vector of external forces can be
recomputed from the image data after each time step. Solution of the explicit Euler
scheme equations is particularly easy because the equations are decoupled, and it
is very fast because only the -� retained modes need be computed.

3.4.3 Deformable superquadrics

Another extension of deformable models that has been used for incorporat-
ing local and global shape features is the deformable superquadric, proposed by
Terzopoulos and Metaxas [47]. This is essentially a hybrid technique where a su-
perquadric surface, which can be defined with a relatively small number of pa-
rameters, is allowed to deform locally for reconstructing the shape of an object.
Although the fitting of global and local deformations is performed simultaneously,
the global deformation is forced to account for as much of the object shape as
possible. The estimated superquadric therefore captures the global shape charac-
teristics and can readily be used in object recognition applications, while the local
deformations capture the details of the object shape.

Terzopoulos and Metaxas consider models that are closed surfaces, denoted by
����, where the parametric coordinates � � �&� '�. This surface can be expressed
as

���� � 	������ � (3.42)

where 	 is a translation vector, and � is a rotation matrix. The vector function
���� denotes the model shape irrespective of pose and can further be expressed as

���� � ���� � ���� � (3.43)

where ���� is a reference shape consisting of the low parameter global shape
model, and ���� is a displacement function consisting of the local deformations.

The reference shapes in this case are superquadrics, which are an extension
of standard quadric surfaces. These surfaces have been used in a variety of ap-
plications for computer graphics and computer vision, because of their ability to
accommodate a large number of shapes with relatively few parameters. The kind
of superquadric of interest here is the superellipsoid, which can be expressed im-
plicitly as [74]
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where � � (�� (�� (� � � are aspect ratio parameters, and %�� %� � � control the
“squareness” of the shape. Using a spherical coordinate reference frame, Terzopou-
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los and Metaxas employ the following expression for the superellipsoid:
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where �*�� � & � *��, �* � ' � *, 1�
� � ������� 2�� ��� 2��, and 0�

� �
������� 2�� ��� 2��. The parameter ( � � controls the scale of the shape. Thus, the
reference shape ���� is characterized by a total of six parameters, which can be
collected into a single vector ��:

�� � �(� (�� (�� (�� %�� %��
� � (3.46)

The displacement function ���� is decomposed into a linear combination of finite
element basis functions and can be written as

���� � ������ � (3.47)

where � is a matrix of the basis functions and �� is a vector of the local deforma-
tion parameters [47].

We denote the vector of all the parameters required by the deformable su-
perquadric to reconstruct a shape as �, which consists of ��, ��, as well as the
rotation and translation parameters of the model from Eq. (3.42). Terzopoulos and
Metaxas use a physics-based model based on the traditional parametric deformable
model to introduce a time variable and model the deformation process (see Sec-
tion 3.2.2). Given some initialization for �, a simplified dynamic force equation
can be written as



��

��
��� � � � � (3.48)

where the first term represents damping forces controlled by the damping matrix

, the second term represents internal forces of the model controlled by the stiff-
ness matrix �, and � � are the external forces. As with the parametric deformable
model, the model deforms according to Eq. (3.48) until these forces reach equilib-
rium.

An important aspect in such a hybrid model is that the global reference shape
should account for as much of the shape to be reconstructed as possible. This is
accomplished in Eq. (3.48) by appropriately defining the stiffness matrix �. In
particular, all entries of � that do not correspond to local deformations are set to
zero. This amounts to imposing no penalty on the evolution of the rotation, trans-
lation, and superquadric parameters. On the other hand, entries corresponding to
the local deformation parameters are selected such that their evolution is restricted
with respect to their magnitude and first derivative.
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As with traditional parametric deformable models, the deformable superquadric
is also well suited to motion estimation tasks, as is described in [75]. For this rea-
son, a popular application of models based on superquadrics has been in cardiac
imaging [74], where the simple shape of the heart can be readily modeled by a
superellipsoid. The deformable superquadric model has been extended by Vemuri
and Radisavljevic [76], who employed a wavelet parameterization of the local de-
formation process. The multiresolution nature of the wavelet decomposition allows
for a smooth transition between the global superquadric and the local descriptors.
They also present a method utilizing training data for obtaining a prior model of
the global parameters. The deformable superquadric model has also been adapted
to multilevel shape representation [77].

3.4.4 Active shape models

Active shape models (ASMs) proposed by Cootes et al. [78, 79] use a different
approach to incorporate prior shape information. Their prior models are not based
on the parameterization, but are instead based on a set of points defined at various
features in the image. In the following, we summarize how the prior model is
constructed and used to enhance the performance of a deformable model and how
the ASM paradigm can be extended to incorporate prior information on the image
intensity rather than on the shape alone.

Construction of the ASM prior model
The ASM prior model is constructed by first establishing a set of labeled point

features, or landmarks, within the class of images to be processed [see Figs. 3.14(a)
and (b)]. These points are manually selected on each of the images in the training
set4. Once selected, the set of points for each image is aligned to one another
with respect to translation, rotation, and scaling. This is accomplished using an
iterative algorithm based on the Procrustes method [80]. This linear alignment
allows studying the object shape in a common coordinate frame, which we will
refer to as the model space of the ASM. After the alignment, there is typically still
a substantial amount of variability in the coordinates of each point. To compactly
describe this variability as a prior model, Cootes and Taylor developed the Point
Distribution Model (PDM), which we now describe.

Given � aligned shapes � ��� �� � � � �� � in the model space, where � 
 �
�

�� �
�� � � � � 

	��� �
	���� is a ��-dimensional vector describing the coordinates
of the � points from the �th shape, the mean shape, �� , is defined to be

�� �
�

�

��

��

� 
 � (3.49)

4See the remarks at the end of this section for recent work on automated landmark labeling.
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(a) (b)

(c)

Figure 3.14: An example of constructing Point Distribution Models. (a) An MR brain im-

age, transaxial slice, with 114 landmark points of deep neuroanatomical structures super-

imposed. (b) A 114-point shape model of 10 brain structures. (c) Effect of simultaneously

varying the model’s parameters corresponding to the first two largest eigenvalues (on a

bi-dimensional grid). Images courtesy of Duta and Sonka [81], The University of Iowa.
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A covariance matrix, �, is computed by

� �
�

� � �

��

��

�� 
 � �� ��� 
 � �� �� � (3.50)

The eigenvectors corresponding to the largest eigenvalues of the covariance ma-
trix describe the most significant modes of variation. Because almost all of the
variability in the model can be described using these eigenvectors, only � such
eigenvectors are selected to characterize the entire variability of the training set.
Note that in general, � is significantly smaller than the number of points in the
model.

Using a principal component analysis (PCA), any shape � in the training set
can be approximated by

� 
 �� � �� � (3.51)

where � � ����� � � ���� is the matrix of the first � eigenvectors, and � �
�)�)� � � � )��� is a vector of weights, referred to as the shape parameters. The
change of shape can be made by varying � accordingly. Limits on the values of
� are imposed to constrain the actual amount of deviation from the mean shape.
Figure 3.14(c) shows a collection of shapes generated for several subcortical struc-
tures from similar transaxial MR brain images by using the two most significant
eigenvectors.

Model fitting procedure
The key idea of ASMs is to constrain the behavior of deformable models us-

ing the PDM obtained as described in the previous section (cf. [79, 81, 82]). At
each iteration, a standard deformation of the parametric deformable model is ap-
proximated by adjusting both the pose (translation, rotation, and scale) parameters
and the shape parameters of the model instance. Thus, only deformations that pro-
duce shapes similar to those in the training set are allowed. The iteration stops
when changes in both the pose and shape parameters are insignificant. Figure 3.15
shows an example of using active shape models to extract the heart wall from an
ultrasound image.

Let us denote the position of the model instance at the beginning of a de-
formation step as � � ���� ��� � � � ��	��� �	���

� , and the required deforma-
tion computed from both internal and external forces as a displacement vector
�� � ����� ���� � � � � ��	��� ��	���

� . Then the position of the model instance,
� , can be compactly represented by its pose and shape parameters, i.e.,

� � �� � ��� and (3.52)

� � "��� 3��� � ��� � (3.53)
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(a) (b)

(c) (d)

Figure 3.15: An example of Active Shape Models. (a) An echocardiogram image. (b) The

initial position of the heart chamber boundary model. The location of the model after (c) 80

and (d) 200 iterations. Images courtesy of Cootes et al. [79], The University of Manchester.

where � is the scaling factor, 3 is the rotation angle, "��� 3��� � is a linear transfor-
mation that performs scaling and rotation on � , and � � � ���� ��� is the center
of the model instance.

First, a global fit is performed by adjusting the pose parameters so that the gen-
erated model instance aligns best with the expected model instance� � �� . The
proper pose parameter adjustments, ��, �3, and �� �, can be estimated efficiently
using a standard least-squares approach (see [79] for details).
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After adjusting the pose parameters, the remaining difference between the gen-
erated and expected model instances can be explained by varying the shape param-
eters. To calculate the adjustment to the shape parameters, first we need to find
the corresponding residue, �� , in the model space, which is required to satisfy the
following constraint:

� � �� � "���� � ���� 3 � �3��� � �� � ��� � ��� � (3.54)

Solving the above equation for �� yields

�� � "������ � ������ 3 � �3������ � (3.55)

where� � "��� 3��� ��������. Note that to derive Eq. (3.55), both Eq. (3.52)
and "����� 3�� � � "������3�� � are used.

Having solved for �� , we next find the adjustments, ��, to the shape parame-
ters such that

� � �� 
 �� � � ��� ��� � (3.56)

A solution can be obtained using a least-squares approximation [83], yielding

�� � � ��� � (3.57)

Note that � �� � � .
To summarize, an iteration step of the ASM consists of first finding a displace-

ment of the model instance in the image space, then calculating the corresponding
adjustments to both the pose and shape parameters, and updating the parameters
accordingly. Note that in practice, weighted adjustments are usually used to update
both the pose and shape parameters [79]. When the shape parameters are updated,
their values are limited within a specified range so that the shape of the model
instance remains similar to the shapes of the training examples.

Active appearance models
A limitation of the ASM is that its prior model does not consider gray-level vari-

ation of the object instance across images. To overcome this difficulty, Edwards,
Cootes, and Taylor [84–86] proposed an extension to the ASM, called active ap-
pearance models (AAM). In AAM, a new prior model is constructed using both
shape and grey-level information. Because the objects represented by AAMs are
more specific than those represented by ASMs, in many applications, AAMs can
lead to more robust results than ASMs.

We will now describe how AAMs are constructed. First, the shape difference
of each object instance is compensated by warping the instance image in such a
way that the warped instance shape matches the mean shape obtained through the
PDM procedure of the ASM. The warping step is implemented using a triangulation
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algorithm (see [87]). The resulting shape-normalized images can then be used to
analyze grey-level variations seen from various example images.

Next, a PCA is applied to the shape-normalized images, yielding a linear model
that characterizes the grey-level variation, i.e.,

� � �� � � ��� � (3.58)

where �� is the mean normalized gray-level vector, � � is a matrix consisting of
significant modes of gray-level variations, and �� is the gray-level parameters that
weight the contribution from different modes of gray-level variations in � �. As
described previously in Eq. (3.52), the instance shape is given by

� � �� � � ��� � (3.59)

Here, for consistency with Eq. (3.58), � � and �� are used to denote the significant
modes of shape variation and the shape parameters, respectively. Thus, given any
instance image of the object of interest, its shape and gray-level pattern can be
represented compactly using the vectors �� and ��.

Because the shape and grey-level parameters may be correlated, a further PCA
is applied to these combined shape and grey-level vectors � � �� ���� ���

� , where
� � is a diagonal matrix of weights to compensate the difference in units between
the shape and grey-level parameters. The PCA yields another linear model

� � �	 �

�
��

��

�
	 � (3.60)

where � is a set of orthogonal modes, 4� and 4� are the corresponding submatri-
ces for the shape and gray-level parameters, respectively, and 	 is referred to as the
appearance parameters that regulate the variations of both the shape and gray-level
pattern of the model.

The final representation of the shape and graylevels in terms of 	 is given by

� � �� � � ��
��
� ��	 (3.61)

� � �� � � ���	 � (3.62)

Despite the fact that the number of the appearance parameters is less than the total
number of the parameters in the original gray-level vector, matching the appearance
model to an unseen image can be a time-consuming task. In [85], Cootes, Edwards,
and Taylor proposed a fast matching algorithm that first learns a linear relationship
between matching errors and desired parameter adjustments from training exam-
ples, then uses this information to predict the parameter adjustments in the real
matching process.

Remarks
In addition to the AAM extension to the ASM, there are many other extensions.

Duta and Sonka [81] applied the ASM to segment subcortical structures from MR
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brain images. They improved the overall reconstruction accuracy of the ASM al-
gorithm by incorporating an outlier-detection algorithm during each deformation
step. Wang and Staib [82] incorporated an additional smoothness prior into the
PDM models to allow the generation of more flexible shape instances. They refor-
mulated the ASM as a Bayesian problem and solved the problem by maximizing
the a posteriori probability.

A major limitation of the ASM is the requirement to place landmarks on the
training images. This procedure is a laborious task for annotating 2D images and
becomes even more demanding for annotating 3D images. This limitation, how-
ever, has been partially alleviated by the recent automatic labeling work [88–90].

3.4.5 Other models

Additional extensions have also been proposed to use global shape information
or prior shape information. For example, Ip and Shen [91] incorporated prior shape
information by using an affine transformation to align a shape template with the
deformable model and guide the model’s deformation to produce a shape consistent
with the template.

The deformable Fourier model, active shape model, and other extensions we
discussed so far are all parametric deformable models. Guo and Vemuri [92] have
proposed a framework for incorporating global shape prior information into ge-
ometric deformable models. Like the deformable superquadric, their hybrid ge-
ometric deformable model uses a combination of an underlying, low parameter,
generator shape that is allowed to evolve. Their model thus retains the advantages
of traditional geometric deformable models, such as topological adaptivity.

External forces for deformable models are typically defined from edges in the
image. Fritsch et al. [93] have developed a technique called deformable shape loci,
which uses information on the medial loci or cores of the shapes to be extracted (see
Section 14.3.11). The incorporation of cores provides greater robustness to image
disturbances such as noise and blurring than purely edge-based models. This allows
their model to be fairly robust to initialization as well as imaging artifacts. They
also employed a probabilistic prior model for important shape features as well as
for the spatial relationships between these features.

3.5 Conclusion and future directions

In this chapter, we have described the fundamental formulation of both para-
metric and geometric deformable models and shown that they can be used in re-
covering shape boundaries. We have also derived an explicit mathematical rela-
tionship between these two formulations that allows one to share the design of
external forces and speed functions. This may lead to new, improved deformable
models. Finally, we give a brief overview of several important extensions of de-
formable models that use application-specific prior knowledge and/or global shape
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properties to obtain more robust and accurate results.
We expect that further improvements in deformable models will be made by the

continued research in both external force and speed function design, model repre-
sentation, model training and learning, and model performance validation. Another
challenging research direction is to develop deformable models that have a greater
control in topology. For example, models that can both constrain or change topol-
ogy depending on the requirements of an application would be extremely useful.
Promising approaches have been proposed recently, such as the work by McInerney
and Terzopoulos [94], who developed a hybrid method that maintains both implicit
and explicit representation for a given model to allow more effective control of the
topology. Finally, integrating deformable models with existing medical systems,
such as surgical simulation, planning, and treatment systems, can further validate
the application of deformable models in a clinical setting and may in turn stimulate
the development of better deformable models.

3.6 Further reading

Several current texts deal with deformable models. The book by Blake and
Yuille [95] contains an excellent collection of papers on the theory and practice
of deformable models. Application of deformable models in motion tracking is
covered in great depth in two recent books [96] by Metaxas and [97] by Blake and
Isard, respectively. The book edited by Singh, Goldgolf, and Terzopoulos [98] con-
sists of a valuable collection of papers on deformable models and their application
in medical image analysis. The book by Sethian [33] on level set methods is a
comprehensive resource for geometric deformable models. A recent survey paper
by McInerney and Terzopoulos [99] provides an excellent source for learning the
application of deformable models in medical image analysis.
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