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Abstract

Shakes, or active contours, are used extensively in com-
puter vision and image processing applications, particu-
larly to locate object boundaries. Problems associated with
initialization and poor convergence to concave boundaries,
however, have limited their utility. This paper develops a
new external force for active contours, largely solving both
problems. This external force, which we call gradient vec-
tor flow (GVF), is computed as a diffusion of the gradient
vectors of a gray-level or binary edge map derived fromthe
image. The resultant field has a large capture range and
forces active contours into concave regions. Examples on
simulated images and one real image are presented.

1 Introduction

Snhakes[10], or active contours, are curvesdefined within
animage domain that can move under the influence of inter-
nal forceswithin the curve itself and external forces derived
from the image data. The internal and external forces are
defined so that the snake will conformto an object boundary
or other desired featureswithin animage. Snakesarewidely
used in many applications, including edge detection [10],
shape modeling [16], segmentation [12], and motion track-
ing [17].

There are two general types of active contour modelsin
the literature today: parametric active contours [10] and
geometric active contours [1, 13]. In this paper, we focus
on parametric active contours, which synthesize parametric
curves within an image domain and allow them to move to-
ward desired features, usually edges. Typically, the curves
are drawn toward the edges by potential forces, which are
defined to be the negative gradient of a potential function.
Additional forces, such as pressure forces[4], together with
the potential forces comprise the external forces. There
are also internal forces designed to hold the curve together
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(elasticity forces) and to keep it from bending too much
(bending forces).

There are two key difficulties with active contour al-
gorithms. First, the initia contour must, in general, be
close to the true boundary or else it will likely converge
to the wrong result. The second problem is that active con-
tours have difficulties progressing into concave boundary
regions [7]. Although many methods such as multireso-
lution methods [11], pressure forces [4], distance potential
forces[5], control points [7], and using solenoidal external
fields [14] have been proposed, they either solve one prob-
lem or solveboth but creating new difficulties. For example,
multiresol ution methods have addressed the issue of initial-
ization, but specifying how the snake should move across
different resolutions remains problematic. Another exam-
pleisthat of pressure forces, which can push an active con-
tour into boundary concavities, but cannot be too strong or
“weak” edgeswill be overwhelmed [15].

In this paper, we present a new class of external forces
for active contour modelsthat addresses the problemslisted
above. These fields, which we call gradient vector flow
(GVF) fields, are dense vector fields derived from images
by minimizing an energy functional in a variational frame-
work. The minimizationis achieved by solving a pair of de-
coupled linear partia differential equations which diffuses
the gradient vectors of agray-level or binary edge map com-
puted from the image. We call the active contour that uses
the GVF field as its external force a GVF snake. Particu-
lar advantages of the GVF snake over a traditional snake
areitsinsensitivity to initialization and ability to move into
concave boundary regions.

2 Background
2.1 Parametric Snake Model
A traditional snake is acurve x(s) = [z(s),y(s)], s €

[0, 1], that moves through the spatial domain of an image to
minimize the energy functional

B= [ 5 R + A (6)) + Bolx()ds (@
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where o and 3 are weighting parameters that control the
snake's tension and rigidity, respectively. x’(s) and x"(s)
denote the first and second derivatives of x(s) with respect
to s. The external energy function E.,; is derived from the
image so that it takes on its smaller values at the features of
interest, such as boundaries.

Given a gray-level image I(z,y) (viewed as a function
of continuous position variables (z, y)), typical external en-
ergies designed to lead an active contour toward step edges
are[10]:

Eéxt (.23, y) _|v1($7 y)|2 (2)
ngt(x,y) = _|V(GU($,y) *I(x,y)”z (3)

where G, (z,y) is a two-dimensional Gaussian function
with standard deviation o and V is the gradient operator.
If theimageis aline drawing (black on white), then appro-
priate external energiesinclude[4]:

ngt ('Tv y) = I(.’L‘, y) 4)
ngt(may) = GU(x,y) *I(Cﬂ,y) (5)

It is easy to see from these definitions that larger o's will
cause the boundaries to become blurry and distorted. Such
large o's are often necessary, however, in order to make
the effect of the boundary “felt” at some distance from the
boundary — i.e., to increase the “ capture range” of the ac-
tive contour.

A snake that minimizes £ must satisfy the Euler equa-
tion

ax'(s) = Bx""(s) = VEext =0 (6)
This can be viewed as a force balance equation
Fint + Féxt =0

where Fipy = ax”'(s) — px""'(s) and Fl, = —VFEex.
Theinternal force Fy,,; discourages stretching and bending
while the external potential force F. , pulls the snake to-
wards the desired image contour.

To find a solution to (6), the snake is made dynamic by
treating x as function of time ¢t aswell as s — i.e., x(s, t).

Then, the partial derivative of x with respect to ¢ is then set
equal to the left hand side of (6) as follows

x¢(s,t) = ax''(s,t) — Bx'""(s,t) — VEext )

When the solution x(s, t) stabilizes, the term x.(s, t) van-
ishes and we achieve a solution of (6). This dynamic equa-
tion can aso be viewed as a gradient descent algorithm [3]
designed to solve (1). A solution to (7) can be found by
discretizing the equation and solving the discrete system it-
eratively (cf. [10]).

2.2 Generalized Force Balance Equations

The externa forces generated from the variational for-
mulation (1) must enter the force balance equation (6) as a
static irrotational field.> To add additional flexibility to the
snake model, it is possible to start from the force balance
equation directly, and to replace F! , with another force
F2_, which need not beirrotational, asfollows

ext?
Fint + ngt =0 (8)

Balloon models [4] comprise an important example of this
approach. In these models F2_, isthe sum of the traditional
potential forces and pressure (or normal) forces, which act
inadirection normal to the curve. Thisincreasesthe capture
range of an active contour, but also requires that the balloon
beinitialized to either shrink or grow. Also, the strength of
the pressureforcesmay be difficult to set, sincethey must be
large enough to overcome weak edges and noise, but small
enough so they do not overwhelm legitimate edge forces. In
this paper, we consider active contour formulations that do
not include pressure forces.

Without pressureforces, two i ssues become problematic:
initialization and convergence to concave regions. Initial-
ization is a problem because the capture range of the tradi-
tional potential force is generally small. The capture range
can beincreased by using alarger o, but this blurs and dis-
torts the edges. This difficulty can be addressed using a
multiresolution approach, but scheduling changes lead to
extremely complex, and ad hoc, algorithms. The distance
potential forces of Cohen and Cohen [5] increase the cap-
ture range in an effective manner; however, as we have
shown in [18] it does not solve the second issue.

Convergence to concave regions is a problem in tradi-
tional snakes, because the contour is often left split across
boundary concavities. An exampleof thisproblemis shown
in Fig. 1. Fig. 1lashows a (64 x 64 pixel) line drawing of
a U-shaped object having a concave region (as viewed from
the outside) at the top of the figure, and Fig. 1c shows a
sequence of curves depicting the iterative progression of a
traditional snake (o« = 0.6, 8 = 0.0, no pressure forces)
toward the boundary. The final solution solves the Euler
equations of the snake formulation, but remains split across
the concave region.

The reason for the poor convergence in Fig. 1c is re-
vealed in Fig. 1b, where the potential force field, -V E.,
with o = 1.0 (pixels), for this example is depicted. Al-
thoughthefield correctly pointstoward the object boundary,
in the concave portion the forces point horizontally in oppo-
sitedirections. Thus, the curveis “pulled” apart toward the
U-shape, but not made to progress downward into the con-
cave region. The poor performance in this example liesin

1An irrotational field is the gradient of a scalar field. Sometimes these
fields are called conservative or curl-free fields.
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Figure 1. A snake with traditional potential
forces cannot move into the concave bound-
ary region.

the problem formulation, not its method of solution. In the
following section, we introduce anew external force formu-
lation which largely solves the problems discussed above.

3 Gradient Vector Flow Field

Our overall approach is to define a new non-irrotational
external force field, which we call the gradient vector flow
(GVF) field. Using a force balance condition as a starting
point (rather than a variational formulation) we then let the
GVF field replace the potential force field in (7), defining a
new snake, which we call the GVF snake. The GVF field
points toward the object boundary when very near to the
boundary, but varies smoothly over homogeneousimage re-
gions, extending to the image border. The main advantages
of the GVF field are that it can capture a snake from along
range— from either side of the object boundary — and can
forceit into concave regions.

3.1 EdgeMap

We begin by defining an edge map f(x,y) derived from
the image I(x,y) having the property that it is larger near
the image edges®. Accordingly, we can use

f(xuy) = _Eéxt('rvy) (9)

wherei = 1, 2, 3, or 4. Thefield Vf has vectors point-
ing toward the edges, but it has a narrow capture range, in
general. Furthermore, in homogeneous regions, I(z,y) is
constant, V f is zero, and therefore no information about
nearby or distant edgesis available.

20Other features besides edges can be sought by redefining f(z,y) to
be larger at desired features of interest, rather than edges.

IEEE Proc. Conf. on Comp. Vis. Patt. Recog. (CVPR'97)

3.2 Gradient Vector Flow (GVF)

We define the gradient vector flow (GVF) field to be the
vector field v(z,y) = (u(x,y),v(z,y)) that minimizesthe
energy functional

£ = // pw(ug® +uy® +v.% +v,2) + |V |v =V | dedy

(10)
This variational formulation follows a standard principle,
that of making the result smooth when there is no data. In
particular, we see that when |V f| is small, the energy is
dominated by partial derivatives of the vector field, yield-
ing a smooth field. On the other hand, when |V f| is large,
the second term dominates the integrand, and is minimized
by setting v = V f. The parameter . is a regularization
parameter governing the tradeoff between the first term and
the second term. This parameter should be set according
to the amount of noise present in the image (more noise,
increase ).

We note that the smoothing term — the first term within
the integrand of (10) — is the same term used by Horn and
Schunk in their classical formulation of optical flow [9]. On
one hand, it is known that this term leads to the Laplacian
operator in the corresponding Euler equations. On the other
hand, it has recently been shown that this term corresponds
to an equal penalty on the divergence and curl of the vec-
tor field [8]. Therefore, the externa field resulting from
this minimization can be expected to be neither entirely ir-
rotational (as are the traditional snake potential fields) nor
entirely solenoidal.

Using the calculus of variations [6], it can be shown that
the GVF can be found by solving the following Euler equa-
tions

HV2U_(u_fz)(fx2+fy2) =0
HV2U_(U_fy)(fw2+fy2) =0

where V2 isthe L aplacian operator. These equationsgiveus
another intuition behind the GV F formulation. We note that
in homogeneous regions, the second term of both equations
(118) and (11b) is zero (because the gradient of f(z,y) is
zero). Therefore, within these regions, u and v are each
determined by Laplace's equation. This resultsin atype of
“filling-in" of information taken from the boundaries of the
region.

Equations (11a) and (11b) can be solved by treating u
and v as functions of time and solving

(11d)
(11b)

ut(xayvt) = Hv2u($7y7t) - (u(x,y,t) - fw(xay))
vt(x,yﬂf) = uVQU(:U,y,t)—(v(m,y,t)—fy(:v,y))

(fol2,9) + fy(w,9)?) (12b)
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The steady-state solution (as ¢t — oo) of these linear
parabolic equationsisthe desired solution of the Euler equa-
tions (11a) and (11b). Note that these equations are decou-
pled, and therefore can be solved as separate scalar partial
differential equationsin « and v. The equationsin (12) are
known as generalized diffusion equations, and are known
to arise in such diverse fields as heat conduction, reactor
physics, and fluid flow [2]. For us, they have appeared from
our description of desirable properties of external fields for
active contours. Diffusionisanatural outcomegiventhede-
sired “filling in” property. A stable explicit finite difference
implementation for solving the steady-state solution of (12)
was givenin[19].

3.3 GVF Snake

After we compute v(z, ), we replace the potential force
—V Eex¢ in the dynamic snake equation of (7) by v(z,y),
yielding

x¢(s,t) = ax'"(s,t) — B8x""(s,t) + v (13)

We call the parametric curve solving the above dynamic
equation as a GVF snake. This equation is solved in sim-
ilar fashion to the traditional snake— i.e., by discretization
and iterative solution.

We note that in [18], we generalized GVF to three di-
mensions and implemented a GV F deformable surface.

4 GVF Fiddsand GVF Snakes

This section shows several examples of GVF external
field computations on simple objects as well as on onereal
medical image and demonstrates the performance of GVF
snakes. The parameters g, (for GVF) and o and 3 (for the
snake) are specified in each case. All the edge map func-
tions used for computing GVF are pre-normalized to the
range [0, 1].

4.1 Convergenceto a Concave Region

In our first experiment, we computed the GVF field for
the line drawing of Fig. 2ausing . = 0.2. Comparing the
resulting field, shown in Fig. 2b, to the potential force field
of Fig. 1b, revedls several key differences. First, the GVF
field hasamuch larger capturerange. Itisclear that in order
to get this extent using traditional potential forcefields, one
would have to use alarge ¢ in the Gaussian filter. But this
would have the effect of blurring (or perhaps even obliterat-
ing) the edges, which is not happening in the GVF field.
A second observation is that the GVF vectors are point-
ing somewhat downward into the top of the U-shape, which
should cause an active contour to move farther into this con-
cave region. Finally, it is clear that the GVF field behaves
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Figure 2. A snake with GVF external forces
moves into the concave boundary region.

in an analogous fashion when viewed from the inside. That
is, the vectors are pointing toward the boundary from as far
away as possible and are pointing upward into the concave
regions (the fingers of the U-shape) as viewed from the in-
side.

Fig. 2c shows the result of applying a GVF snake with
parametersa. = 0.6 and 8 = 0.0 to the line drawing shown
in Fig. 2a (using the external GVF field of Fig. 2b). In this
case, the snake was initialized farther away from the object
than the initialization in Fig. 1c, and yet it converges very
well to the boundary of the U-shape. It should be noted
that the blocky appearance of the U-shape results from the
fact that the image is only 64 x 64 pixels. The snake itself
moves through the continuum (using bilinear interpolation
to derive external field forces which are not at grid points)
to arrive at a sub-pixel interpolation of the boundary.

4.2 Streamlines of external forcefields

It is interesting to compare the capture range between
thetraditional potential forcefields and GV F fields by look-
ing at their streamlines. The streamlines are the paths over
which a dense number of free particles move under the in-
fluence of external forces when placed in the external force
field.

Fig. 3a gives the streamlines for the potential force field
of Fig. 1b, and Fig. 3b gives the streamlines for the GVF
field of Fig. 2b. Two effectsare clear from thisfigure. First,
the capture range of GVF is clearly much larger than that
of the potential forces. Second, GVF provides downward
forces within the concave region at the top of the U-shape,
while potential forces only provide sideways forces.
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Figure 3. Stream lines of particles in (a) a po-
tential force field and (b) a GVF field.
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Figure 4. A GVF snake converges to the same
result from either the inside or the outside.

4.3 Snakelnitialization

Fig. 4a shows the computed GVF (1 = 0.1) for the line
drawing square shown using gray linesin Figs. 4b and 4c.
Figs. 4b and 4c show GVF snakeresultsusing initializations
fromtheinside (Fig. 4b) and from the outside (Fig. 4c). The
two final configurations are nearly indistinguishable from
each other, indicating that the GVF snake can beinitialized
either inside or outside the desired boundary. It should be
noted that, unlike pressure forces, the GVF snake does not
require the a priori knowledge of whether to shrink or ex-
pand.

It can also be seen from Figs. 4b and 4c that thefinal con-
figuration has slightly rounder cornersthan the square. This
isone of the effects of p, the regularization parameter in the
GVF formulation. Choosing i smaller will tend to reduce
this rounding, but will also reduce the strength of smooth-
ing term. It should be noted, however, that this particular
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Figure 5. A GVF snake can also be initialized
across the object boundary.

image has only 64 x 64 pixels, and the rounded corner of
the snakeis till within one pixel of the original corner.

Figs. 5a and 5b demonstrate a further initialization in-
sensitivity: the initial snake can cross the boundary. The
result shown in Fig. 5ais nearly indistinguishable from that
in Figs. 4b and 4c; and the result shown in Fig. 5bis nearly
indistinguishable from that shown in Fig. 2c. Of course,
there must be limits on the full range of possible valid GVF
snake initializations. A full theoretical and empirical study
of these limitsis a subject for future research.

4.4 Gray-level Images

The underlying formulation of GVF is valid for gray-
level images as well as binary images. To compute GVF
for gray-level images, the edge-map function f(z,y) must
first be calculated. Two possible choices for the edge-map
ae fl(z,y) = [VI(z,y)| or f2(x,y) = [V(Go(z,y) *
I(z,y))]. A motivation for applying some Gaussian fil-
tering to the underlying image is to reduce noise. Other
more complicated noise-removal techniques such as median
filtering, morphological filtering, and anisotropic diffusion
could also be used to improve the underlying edge map.
Given an edge-map function and an approximation to its
gradient, GVF is computed in the usual way using Equa-
tion (12).

Fig. 6a shows a (160 x 160) magnetic resonance image
(short-axis section) of the left ventrical of a human heart.
Fig. 6b shows an edge map computed using f(z,y) =
f?(x,y) with ¢ = 2.5 (normalized to the range [0, 1]).
Fig. 6¢ shows the computed GVF, and Fig. 6d shows a se-
guence of GVF snakes (plotted in a shade of gray) and the
GVF snake result (plotted in white), both plotted on the
origina image. Clearly, many details on the endocardial
border are captured by the GVF snake result, including the
papillary muscles (the bumpsthat protrudeinto the cavity).
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Figure 6. (a) A magnetic resonance image of
the left ventrical of a human heart (short-axis
section). (b) The edge map |V(G, * I)|? with
o =2.5. (c) The computed GVF. (d) Initial and
intermediate contours (gray curves) and the
final contour (white curve) of the GVF snake.

5 Conclusion

We have introduced a new external force model for
snakes called gradient vector flow (GVF). The field is cal-
culated as a diffusion of the gradient vectors of a gray-level
or binary edge map. We have shown that it allows for flex-
ibleinitialization of the snake and encourages convergence
to boundary concavities.

Further investigations into the nature and uses of GVF
are warranted. A complete characterization of the capture
range of the GVF field would help in snake initialization
procedures. Investigationsinto the optimal selection of the
GVF parameter p, and the interplay between p and the
snake parameters « and 3 are desirable. Finaly, the GVF
framework might be useful in defining new connections be-
tween parametric and geometric snakes, and might form the
basis for a new geometric snake.

Acknowledgments
The authors would like to thank Dzung Pham, Sandeep

Gupta, and Prof. Joel Spruck for their discussions concern-
ing thiswork.

References

[1] V. Casdlles, F. Catte, T. Coall, and F. Dibos. A geometric
model for active contours. Numerische Mathematik, 66:1—
31, 1993.

[2] A.H. Charlesand T. A. Porsching. Numerical Analysis of
Partial Differential Equations. Prentice Hall, Engelwood
Cliffs, NJ, 1990.

[3] I. Cohen, L. D. Cohen, and N. Ayache. Using deformable
surfaces to segment 3-D images and infer differential struc-
tures. CVGIP: Image Understanding, 56(2):242—263, Sept.
1992.

[4] L. D. Cohen. On active contour models and balloons.
CVGIP: Image Understanding, 53(2):211-218, Mar. 1991.

[5] L.D.Cohenandl.Cohen. Finite-element methodsfor active
contour models and balloons for 2-D and 3-D images. |EEE
Trans. on Pattern Anal. Machine Intell., 15(11):1131-1147,
Nov. 1993.

[6] R. Courant and D. Hilbert. Methods of Mathematical
Physics, volume 1. Interscience, New York, 1953.

[7] C. Davatzikos and J. L. Prince. An active contour model
for mapping the cortex. |EEE Trans. on Medical Imaging,
14(1):65-80, Mar. 1995.

[8] S.N. Guptaand J. L. Prince. Stochastic models for DIV-
CURL optical flow methods. |EEE Sgnal Processing Let-
ters, 3(2):32-35, 1996.

[9] B.K.P HornandB. G. Schunck. Determining optical flow.
Artificial Intelligence, 17:185-203, 1981.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes. Active
contour models. Int. J. Computer Vision, 1(4):321-331,
1987.

[11] B. Leroy, I. Herlin, and L. D. Cohen. Multi-resolution al-
gorithms for active contour models. In 12th International
Conference on Analysis and Optimization of Systems, pages
5865, 1996.

[12] F Leymarieand M. D. Levine. Tracking deformable objects
in the plane using an active contour model. |EEE Trans. on
Pattern Anal. Machine Intell., 15(6):617—634, 1993.

[13] R.Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling
with front propagation: A level set approach. |EEE Trans.
on Pattern Anal. Machine Intell., 17(2):158-175, 1995.

[14] J. L. Prince and C. Xu. A new external force model for
snakes. In 1996 Image and Multidimensional Signal Pro-
cessing Workshop, pages 30-31, 1996.

[15] H. Tek and B. B. Kimia. Image segmentation by reaction-
diffusion bubbles. In Proc. Fifth Int. Conf. on Computer
\ision, pages 156162, 1995.

[16] D. Terzopoulos and K. Fleischer. Deformable models. The
Visual Computer, 4:306-331, 1988.

[17] D. Terzopoulos and R. Szeliski. Tracking with Kalman
snakes. InA. Blakeand A. Yuille, editors, Active Vision, Ar-
tificial Intelligence, pages 3-20. The MIT Press, Cambridge,
M assachusetts, 1992.

[18] C. Xuand J. L. Prince. Snakes, shapes, and gradient vector
flow. |[EEE Trans. on Image Processing. to appear.

[19] C. Xu and J. L. Prince. Snakes, shapes, and gradient vec-
tor flow. Technical Report JHU-ECE TR96-15, The Johns
Hopkins University, Oct. 1996.



