Abstract

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the *SeaWiFS Technical Report Series*, which ended after 43 volumes were published. A follow-on series was started, titled the *SeaWiFS Postlaunch Technical Report Series*. This particular volume serves as a reference, or guidebook, to the previous five volumes and consists of four sections including: an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.

1. **INTRODUCTION**

This is the first in a series of indexes, published as a separate volume in the *SeaWiFS Postlaunch Technical Report Series*, and includes information found in the first five volumes of the series. The *SeaWiFS Postlaunch Technical Report Series* has been written under the National Aeronautics and Space Administration’s (NASA) Technical Memorandum (TM) numbers 1998–206892, 1999–206892, and 2000–206892, with the year part of the TM number changing with each calendar year of its existence. The volume numbers, authors, and titles of the volumes covered in this index are:

Vol. 1: Johnson, B.C., J.B. Fowler, and C.L. Cromer, *The SeaWiFS Transfer Radiometer (SXR)*.

This volume serves as a reference, or guidebook, to the preceding volumes of the so-called *Postlaunch Series*. It consists of three main sections: a cumulative index to key words and phrases, a glossary of acronyms, and a bibliography of all references cited in the series. In addition, an errata section has been added to address issues and needed corrections which have come to the editors’ attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it uses a unique format because multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project. An index entry is composed of a keyword or phrase followed by an entry field that directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a page identifier, which is always enclosed in parentheses:

keyword, volume(page).

If an entry is the subject of an entire volume, the volume field is shown in slanted type without a page field:

keyword, Vol. #.

An entry can also be the subject of a complete chapter. In this instance, both the volume number and chapter number appear without a page field:

keyword, volume(ch. #).

Figures or tables that provide particularly important summary information are also indicated as separate entries in the page field (even if they fall within an already specified page range). In this case, the figure or table number is given with the page number on which it appears.

keyword, volume(Fig. # p. #).

or

keyword, volume(Table # p. #).

2. **ERRATA**

In Table 11 of Vol. 1, the value for \(p_1 \) for Channel 6 should read \(1.12093 \times 10^{-3} \), not \(1.12093 \times 10^{-4} \).
The authorship in the citation of Volume 4, listed on the last page of that volume should be “Johnson, B.C., E.A. Early, R.E. Eplee, Jr., R.A. Barnes, and R.T. Cafrey”.

Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, e.g., they have gone from “submitted,” “accepted,” or “in press” to printed matter. In other instances, some part (or parts) of the citation, e.g., the title or year of publication, has changed or was printed incorrectly. Listed below are the references in question as they were cited in one or more of the first five volumes in the series, along with how they now appear in the references section of this volume.

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citations

and

Revised Citation

Original Citation

Revised Citation

Cumulative Index

Unless otherwise indicated, the index entries that follow refer to some aspect of the SeaWiFS instrument or project.

- A -

AMT-5, Vol. 2; 3(11).

ammonium uptake, 2(36–37).

biogasses, 2(37–39, Fig. 20 p. 38).

biogenic sulphur, 2(39, Fig. 21 p. 38).

bottle log, 2(Table C2 p. 57–65).

bridge log, scientific, 2(Table B1 pp. 48–56).

CHN sample log, 2(Table M1 p. 94).

crew members, 2(Table A1 p. 47).

cruise participants, 2(108–109).

cruise strategy, 2(2–4, Table 1 p. 3).

cruise track, 2(4–8, Fig. 1 p. 5).

CTD station, 2(Table C1 p. 57).

DOC buffer log, 2(Table O1 pp. 95–107).

FRRF, 2(27, Table H1 pp. 78–85).

Guanidinium buffer log, 2(Table O2 p. 107).

instrumentation, 2(19–25, 27).

in-water optics, 2(19–24, Fig. 14 p. 23).

LoCNESS station log, 2(Table E3 p. 72).

microzooplankton, 2(41–43, Fig. 22 p. 42, Table N1 p. 95).

nitrate uptake, 2(36–37, Table K1 p. 92).

nutrients, 2(35–36, Table J1 p. 92).

OPC sample log, 2(Table L1 pp. 92–93).

physical oceanography, 2(8–13, Figs. 2–9 pp. 9–12).

phytoplankton pigment distributions, 2(31–32, Fig. 18 p. 33).

primary productivity, 2(32, 35).

research reports, 2(8–43).

ROSSA, 2(14, 16–19, Fig. 12 p. 16, Fig. 13 p. 18).

seawater filtration, 2(27, 31, Table I1 p. 78).

SeaFALLS station log, 2(Table E2 pp. 69–71).

SeaOPS station log, 2(Table E1 pp. 67–69).

SeaWiFS, calibration and validation of, 2(43–46, Fig. 23 p. 45–46).

station filtration log, 2(Table I2 pp. 85–91).

sun photometer, 2(25–27, Figs. 16–17 pp. 28–30, Table F1 p. 73–77).

surface optics, 2(24–25, Fig. 15 p. 25).

TOPEX, 2(13–14, Figs. 10–11 p. 15).

UOR optics, 2(27).

XBT casts, 2(Table D1 pp. 65–67).

XOBT cast log, 2(Table G1 p. 77).

zooplankton, 2(39–41, Table M1 p. 94).

Atlantic Meridional Transect, see AMT-5.

atmospheric transmittance, 5(9, Figs. 4–5 pp. 10–11).

diffuser, 5(9–11, Tables 1–4 pp. 11–12).

- B, C, D -

detector-based radiometry, see SXR.

- E, F, G -

ground measurements, 5(11–12).

- H, I -

integrating sphere sources, Vol. 1; Vol. 4. see also SXR.

interference filter, see SXR.

instrumentation,

AMT cruise, 2(19–25, 27).

SeaBOARR, 3(2–17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Fig. 2 p. 5, Fig. 3 p. 6, Figs. 4–5 p. 7, Figs. 6–7 pp. 8–9, Figs. 8–9 pp. 10–11, Figs. 10–12 pp. 12–13, Fig. 13 p. 15, Figs. 14–15 p. 17).

- J, K, L -

LoCNESS station log, 2(Table E3 p. 72).

- M, N, O -

optics,
in-water, 2(19–24, Fig. 14 p. 23).

surface, 2(24–25, Fig. 15 p. 25).

- P -

phytoplankton pigment distributions, 2(31–32, Fig. 18 p. 33).

primary productivity, 2(32, 35).

- Q, R -

radiometer, see SXR.

radiometric calibration, Vol. 4; Vol. 5.

1993 calibration, 4(2–6, Tables 1–3 p. 3, Table 4 p. 4); 5(13, Table 5 p. 13, Figs. 6–7 p. 15, Table 15 p. 18).

1997 calibration, 5(13, Table 5 p. 13, Figs. 6–7 p. 15, Table 15 p. 18).

measurement procedures, 4(9–14, Table 8 p. 13).

SXR, 4(6–7, Table 6 p. 7, 10, 12–17, Figs. 1–2 pp. 15–16, Table 10 p. 17, Fig. 3 p. 18, 18–19).

test equipment, 4(6–9, Table 6 p. 7, Table 7 p. 8).

reflectance equations,

band-averaged center wavelength, 5(5–6).

band-averaged spectral radiance, 5(5).

BRDF, 5(3–4, Fig. 1 p. 4).

SBRC basic equation, 5(6, Fig. 2 p. 7).

solar radiation-based calibration, 5(3–6).

spectral response, 5(4–5).

transfer-to-orbit experiment, 5(22, Tables 19–20 p. 23).

- S -

SeaBOARR, Vol. 4.

DalROSS, 3(11–13, Figs. 10–11 p. 12, Fig. 13 p. 15, Table G1 pp. 34–35.)

DalSAS, 3(10–11, Fig. 9 p. 11, Table F1 pp. 33–34).

instrumentation, 3(2–17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Fig. 2 p. 5, Fig. 3 p. 6, Figs. 4–5 p. 7, Figs. 6–7 pp. 8–9, Figs. 8–9 pp. 10–11, Figs. 10–12 pp. 12–13, Fig. 13 p. 15, Figs. 14–15 p. 17).

methods, 3(18–24, Fig. 16 p. 19, Table 3 p. 20, Table 4 p. 22).

preliminary results, 3(24–26, Table 5 p. 24, Fig. 17 p. 25).

science team, 3(27).

SQM-II, 3(13–14, Fig. 13 p. 15, 23–24, Table H1 p. 35–36).
SeaBOARR cont.
SeaSAS, 3(7–8, Figs. 4–6 pp. 7–8, Table C1 pp. 30–31).
THOR, 3(6, Fig. 4 p. 7).
WiSPER, 3(9–10, Figs. 7–8, pp. 9–10, 18, Fig. 16 p. 19, Table D1 p. 32).
SeaFALLS station log, 2(Table E2 pp. 69–71).
SeaOPS station log, 2(Table E1 pp. 67–69).
SeaWiFS Bio-Optical Algorithm Round-Robin, see SeaBOARR.
SeaWiFS Transfer Radiometer, see SXR.
solar radiation-based calibration, 5(1–21).
reflectance equations, 5(3–6).
risks and disadvantages, 5(2).
solar irradiances, 5(7–9, Tables 10–16 pp. 17–19).
6S, 5(16, Table 12 p. 17, Table 13 p. 18, Table 16 p. 19).
band-averaged, 5(16, Table 10 p. 17, Table 12 p. 17, Table 14 p. 18).
Fraunhofer lines, 5(19–21, Fig. 9 p. 20, Table 18 p. 21).
MODTRAN, 5(16, Tables 10–11 p. 17, Table 16 p. 19).
SeaWiFS, 5(Table 16 p. 19).
Thuiller, 5(16, Tables 14–17 pp. 18–19, Table 17 p. 19).
Wehrli, 5(13–16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
spectral radiance, 4(19–21, Fig. 3 p. 18, Figs. 4–5 p. 20, Tables 11–13 p. 21).
see also SXR.
spectral response, 5(7, Fig. 3 p. 8, Fig. 8 p. 19, 19–21).
sun photometer, 2(25–27, Figs. 16–17 pp. 28–30, Table F1 p. 73–77).
SXR, Vol. 1; Vol. 4.
description of, 1(1–2, Table 1 p. 2).

SXR cont.
electrical subsystems, 1(11–14, Table 3 p. 12, Fig. 9 p. 12, Tables 4–5 p. 13, Table 6 p. 14, Table 7 p. 15).
imstrument design, 1(2–16, Table 2 p. 3, Fig. 1 p. 3, Figs. 3–8 pp. 7–9, Fig. 9 p. 12, Table 3 p. 12, Tables 4–5 p. 13, Table 6 p. 14).
measurements, 1(50–52, Tables 17–18 p. 52); 4(12–17, Figs. 1–2 pp. 15–16, Table 10 p. 17, Fig. 3 p. 18, 18–19).
measurement channels, 1(4–6, Fig. 2 p. 5).
parts used, 1(Table A1 p. 55).
performance analysis, 1(16–50).
relative flux response, 1(38–43, Table 13 p. 39, Fig. 22 pp. 40–42).
signal voltage, 1(Table 16 p. 46, Fig. 24 pp. 47–49).
spectral radiance, 1(Table 14 p. 44, Table 15 p. 45, Fig. 23 p. 45); 4(Table 6 p. 7, Table 10 p. 17, Fig. 3 p. 18, Fig. 4 p. 20).
– T, U, V, W, X, Y, Z –
transfer radiometer, Vol. 1; Vol. 4.
see also SXR.
transfer-to-orbit experiment, Vol. 5.
concept, 5(21).
in-flight measurements, 5(22–25, Fig. 10 p. 24, Table 21 p. 25, Fig. 11 p. 25).
reflectance equations, 5(22, Tables 19–20 p. 23).
Glossary

6S Not an acronym, but an atmospheric photochemical and radiative transfer model.

– A –
A/D Analog-to-Digital
AAOT Acqua Alta Oceanographic Tower
AC Alternating Current
ADCP Acoustic Doppler Current Profiler
AERONET Aerosol Robotic Network
AMT Atlantic Meridional Transect
AMT-5 The Fifth AMT (cruise)
AOT Aerosol Optical Thickness
ASCII American Standard Code for Information Interchange
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTM American Society for Testing and Materials
ATA Ambient Temperature Plate Assembly
ATSR Along-Track Scanning Radiometer
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer

– B –
BAS British Antarctic Survey
BCD Binary Coded Decimal
BNC Bayonet Nut Connector
BPA Back Plate Assembly
BRDF Bidirectional Reflectance Distribution Function
BSST Bulk Sea Surface Temperature

– C –
C-FALLS Software package for logging SeaFALLS data.
C-mount Not an acronym, but a mounting system for camera lenses.
C-OPS Combined Operations
CANIGO Canary Islands, Azores, Gibraltar Observations
CC Cloud Cover
CCAR Colorado Center for Astrodynamics Research
CCD Charge-Coupled Device
CCMS Centre for Coastal and Marine Studies
CCN Cloud Condensation Nuclei
CCPO Center for Coastal Physical Oceanography
CDOM Colored Dissolved Organic Matter
CEC Commission of the European Communities
CERT Calibration Evaluation and Radiometric Testing
CHN Carbon-Hydrogen-Nitrogen
CNR Consiglio Nazionale delle Ricerche (National Research Council)
CoASTS Coastal Atmosphere and Sea Time Series
COTS Commercial Off-The-Shelf
CT Cylindrical Tube or Conductivity and Temperature, depending on usage.
CTD Conductivity, Temperature, and Depth

– D –
DalBOSS Dalhousie Buoyant Optical Surface Sensor
DalSAS Dalhousie SeaWiFS Aircraft Simulator
DARR-94 Data Analysis Round-Robin
DAS Data Acquisition Sequence

DATA Not an acronym, but a designator for the Satellite, Inc., series of power and telemetry units.
DC Direct Current
DCM Deep Chlorophyll Maximum
DCP Data Collection Platform
DIO Digital Input-Output
DIR Not an acronym, but a designator for the Satellite, Inc., series of directional units.
DMA Dimethyldimethane
DMM Digital Multimeter
DMS Dimethylsulphide
DMSP Dimethylsulphoniopropionate
DMSPd Dissolved DMSP
DMSPp DMSP within phytoplankton cells
DNA Deoxyribonucleic Acid
DOC Dissolved Organic Carbon
DPA Detector Plate Assembly
DUT Device Under Test
DVM Digital Voltmeter

– E –
E East
EDTA Ethylenediaminetetraacetic Acid
EEZ Exclusive Economic Zone
e-mail Electronic Mail
EOS Earth Observing System
EP Entrance Pupil
ERS-2 The Second Earth Resources Satellite
EU European Union
EUC Equatorial Under Current

– F –
FASCAL Facility for Automated Spectroradiometric Calibrations (NIST)
FEL Not an acronym, but a lamp designator.
FET Field-Effect Transistor
FIGD-IC Flow Injection Gas-Diffusion Coupled to Ion Chromatography
F-mount Not an acronym, but a mounting system for camera lenses.
FRRF Fast Repetition Rate Fluorometer
FS Field Stop

– G –
GF/F Not an acronym, but a specific type of glass fiber filter manufactured by Whatman.
GMT Greenwich Mean Time
GOES-8 The Eighth Geostationary Operational Environmental Satellite
GPIB General Purpose Interface Bus
GSE Ground Support Equipment
GSFC Goddard Space Flight Center

– H –
HACR High-Accuracy Cryogenic Radiometer
HP Hewlett-Packard
HPLC High Performance Liquid Chromatography
HTCO High Temperature Catalytic Oxidation
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAD</td>
<td>Ion-Assisted Beam Deposition</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ID</td>
<td>Inside Diameter</td>
</tr>
<tr>
<td>IDL</td>
<td>Interactive Data Language</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>IF</td>
<td>Interference Filter</td>
</tr>
<tr>
<td>ILX</td>
<td>Not an acronym.</td>
</tr>
<tr>
<td>IOP</td>
<td>Inherent Optical Property</td>
</tr>
<tr>
<td>IOS</td>
<td>Institute of Oceanographic Sciences</td>
</tr>
<tr>
<td>ISDGM</td>
<td>Istituto per lo Studio della Dinamica delle Grandi Masse (Italy)</td>
</tr>
<tr>
<td>ISIC</td>
<td>Integrating Sphere Irradiance Collector</td>
</tr>
<tr>
<td>JCR</td>
<td>James Clark Ross</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
<tr>
<td>LANDSAT</td>
<td>Land Satellite</td>
</tr>
<tr>
<td>LLR</td>
<td>Low Level Radiance</td>
</tr>
<tr>
<td>LoCNESs</td>
<td>Low-Cost NASA Environmental Sampling System</td>
</tr>
<tr>
<td>LS</td>
<td>Light Stability</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>LXR</td>
<td>LANDSAT Transfer Radiometer</td>
</tr>
<tr>
<td>MA</td>
<td>Methylamine</td>
</tr>
<tr>
<td>METEOSAT</td>
<td>Meteorological Satellite</td>
</tr>
<tr>
<td>MFR-6</td>
<td>Multi-Filter Rotating Shadow-Band Radiometer</td>
</tr>
<tr>
<td>miniNESS</td>
<td>miniature NASA Environmental Sampling System</td>
</tr>
<tr>
<td>MISR</td>
<td>Multiangle Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MMA</td>
<td>Mirror Mount Assembly or Monomethylamine, depending on usage.</td>
</tr>
<tr>
<td>MOBY</td>
<td>Marine Optical Buoy</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MODTRAN</td>
<td>Not an acronym, but an atmospheric photochemical and radiative transfer model.</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MVDS</td>
<td>Multichannel Visible Detector System</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NEC</td>
<td>Not an acronym, but the present name for the Nippon Electric Company (Japan)</td>
</tr>
<tr>
<td>NECC</td>
<td>North Equatorial Counter Current</td>
</tr>
<tr>
<td>NEUC</td>
<td>North Equatorial Undercurrent</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-Infrared</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRSR</td>
<td>Normalized Remote Sensing Reflectance</td>
</tr>
<tr>
<td>OCI</td>
<td>Ocean Color Irradiance</td>
</tr>
<tr>
<td>OCR</td>
<td>Ocean Color Radiance</td>
</tr>
<tr>
<td>OCTS</td>
<td>Ocean Color Temperature Scanner</td>
</tr>
<tr>
<td>OD</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>OPC</td>
<td>Optical Plankton Counter</td>
</tr>
<tr>
<td>OrbView-2</td>
<td>Not an acronym, but the current name for the SeaStar satellite.</td>
</tr>
<tr>
<td>OSC</td>
<td>Orbital Sciences Corporation</td>
</tr>
<tr>
<td>P-I</td>
<td>Photosynthesis-Irradiance</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically Available Radiation</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional, Integral, Differential</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PML</td>
<td>Plymouth Marine Laboratory</td>
</tr>
<tr>
<td>POC</td>
<td>Particulate Organic Carbon</td>
</tr>
<tr>
<td>PRIME</td>
<td>Plankton Reactivity in the Marine Environment</td>
</tr>
<tr>
<td>PRT</td>
<td>Platinum Resistance Temperature (sensor)</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Standard Time</td>
</tr>
<tr>
<td>PSU</td>
<td>Practical Salinity Units</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polyfluorotetraethylene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinylchloride</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RE</td>
<td>Ramsden Eyepiece</td>
</tr>
<tr>
<td>RL</td>
<td>Relay Lens</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Square Difference</td>
</tr>
<tr>
<td>ROSA</td>
<td>Radiometric Observations of the Sea Surface and Atmosphere</td>
</tr>
<tr>
<td>RRS</td>
<td>Royal Research Ship</td>
</tr>
<tr>
<td>RSG</td>
<td>(PML) Remote Sensing Group</td>
</tr>
<tr>
<td>RSMAS</td>
<td>Rosenstiel School for Marine and Atmospheric Science</td>
</tr>
<tr>
<td>RSR</td>
<td>Relative Spectral Response</td>
</tr>
<tr>
<td>RTV</td>
<td>Room Temperature Vulcanizing</td>
</tr>
<tr>
<td>RVS</td>
<td>(BAS) Research Vessel Services</td>
</tr>
<tr>
<td>S</td>
<td>South</td>
</tr>
<tr>
<td>S/N</td>
<td>Serial Number</td>
</tr>
<tr>
<td>SACZ</td>
<td>Sub-Antarctic Convergence Zone</td>
</tr>
<tr>
<td>SAI</td>
<td>Space Applications Institute</td>
</tr>
<tr>
<td>SBE</td>
<td>Sea-Bird Electronics</td>
</tr>
<tr>
<td>SBRC</td>
<td>Santa Barbara Research Center (Raytheon)</td>
</tr>
<tr>
<td>SBRS</td>
<td>Santa Barbara Remote Sensing</td>
</tr>
<tr>
<td>SBUV</td>
<td>Solar Backscatter Ultraviolet Radiometer</td>
</tr>
<tr>
<td>SDY</td>
<td>Sequential Day of the Year</td>
</tr>
<tr>
<td>SeaACE</td>
<td>SeaWiFS Atlantic Characterization Experiment</td>
</tr>
<tr>
<td>SeaBASS</td>
<td>SeaWiFS Bio-Optical Archive and Storage System</td>
</tr>
<tr>
<td>SeaBOARR</td>
<td>SeaWiFS Bio-Optical Algorithm Round-Robin</td>
</tr>
<tr>
<td>SeaBOARR-98</td>
<td>The First SeaBOARR (held in 1998)</td>
</tr>
<tr>
<td>SeaBOSS</td>
<td>SeaWiFS Buoyant Optical Surface Sensor</td>
</tr>
<tr>
<td>SeaFALLS</td>
<td>SeaWiFS Free-Falling Advanced Light Level Sensors</td>
</tr>
<tr>
<td>SeaOPS</td>
<td>SeaWiFS Optical Profiling System</td>
</tr>
<tr>
<td>SeaSAS</td>
<td>SeaWiFS Surface Acquisition System</td>
</tr>
</tbody>
</table>
SeaStar Not an acronym, but the former name of the satellite on which SeaWiFS was launched, now known as OrbView-2.

SeaSURF SeaWiFS Square Underwater Reference Frame

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SEC South Equatorial Current

SEM Scanning Electronic Microscopy

SEUC South Equatorial Undercurrent

SIMBIOS Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies

SIRREX SeaWiFS Intercalibration Round-Robin Experiment

SIRREX-1 The First SIRREX (July 1992)

SIRREX-2 The Second SIRREX (June 1993)

SIRREX-3 The Third SIRREX (September 1994)

SIRREX-4 The Fourth SIRREX (May 1995)

SIRREX-5 The Fifth SIRREX (July 1996)

SIS Spherical Integrating Source

SMSR SeaWiFS Multichannel Surface Reference

SOC Southampton Oceanography Centre

SOMARE Sampling, Observations and Modelling of Atlantic Regional Ecosystems

SOOP SeaWiFS Ocean Optics Protocols

SOSSTR Ship of Opportunity Sea Surface Temperature Radiometer

SPMR SeaWiFS Profiling Multichannel Radiometer

SQM SeaWiFS Quality Monitor

SQM-II The Second Generation SQM

SS Sea State

SSE Size-of-Source Effect

SSH Sea Surface Height

SSM/I Special Sensor for Microwave/Imaging

SSST Sea Surface Skin Temperature

SXR SeaWiFS Transfer Radiometer

TEC Thermoelectric Cooler

THOR Three-Headed Optical Recorder

TMA Trimethylamine

TOC Total Organic Carbon

TOPEX Topography Experiment

TSG Thermosalinograph

TSM Total Suspended Matter

TTL Transistor–Transistor Logic

UIC Underway Instrumentation and Control

UK United Kingdom

UNC Unified Course

UOR Undulating Oceanographic Recorder

UPS Uninterruptable Power Supply

VAFB Vandenberg Air Force Base

VisSCF Visible Spectral Comparator Facility (NIST)

VXR Visible Transfer Radiometer

W West

WETLabs Western Environmental Technology Laboratories (Inc.)

WiSPER Wire-Stabilized Profiling Environmental Radiometer

WM Spherical Mirror Wedge Section

WMO World Meteorological Organization

WOCE World Ocean Circulation Experiment

WS Wind Speed

XBT Expendable Bathythermograph

XOTD Expendable Optical, Temperature, and Depth

YB71 Not an acronym, but a type of paint for solar diffusers.
References

—, D, E—

—H—

—J—

— K —

— L —

— M —

— R —

— S —

— T —

The SeaWiFS Postlaunch Technical Report Series

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6