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Concentrations of the phytoplankton pigment chlorophyll-a (Ca) provide indicators of nutrient over-
enrichment that has negatively affected Chesapeake Bay, U.S.A. Ca time-series from the National Aeronautics
and Space Administration (NASA) Sea-viewingWide Field-of-viewSensor (SeaWiFS) andModerate Resolution
Imaging Spectroradiometer aboard the Aqua spacecraft (MODIS-Aqua) provide observations on temporal and
spatial scales that far exceed current field and aircraft sampling strategies. These sensors provide consistent,
frequent, and high density data to potentially complement ongoing Bay monitoring activities. We used the in
situWater Quality Monitoring Data set of the Chesapeake Bay Program to evaluate decade-long time-series of
SeaWiFS and MODIS-Aqua Ca retrievals in the Bay. The accuracy of the retrievals generally degraded with
increasing latitude as the optical complexity increases northward. Ca derived using empirical (“band ratio”)
algorithms overestimated in situ measurements by 10–50 and 40–100% for SeaWiFS and MODIS-Aqua,
respectively, but with limited variability. Ca derived using spectral-matching algorithms showed less bias for
both sensors, but with significant variability and sensitivity to radiometric errors. Regionally-tuned empirical
algorithms performed best throughout the Bay, offering a combination of reasonable accuracy and high spatial
coverage. The radiometric spectral resolution used as input to the algorithms strongly influenced the quality of
Ca retrievals from both sensors. These results establish a baseline quantification of algorithm and sensor
performance in a variable and stressed ecosystem against which novel approaches might be compared.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The National Aeronautics and Space Administration (NASA) Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution
Imaging Spectroradiometer aboard the Aqua spacecraft (MODIS-Aqua)
provide an opportunity to study the marine biosphere on spatial and
temporal scales unattainable by conventional sampling methods. These
ocean color satellites measure the upwelling radiance emitted from the
top of the Earth's atmosphere at discrete visible and infraredwavelengths.
Atmospheric correction algorithms (Gordon & Wang, 1994) are used to
remove the contribution of the atmosphere from the total signal and
produce estimates of spectral radiance exiting the water mass. These
water-leaving radiances (Lw(λ); μW cm−2 nm−1 sr−1) are used to
retrieve additional geophysical properties via the application of bio-
optical algorithms. Typically, such algorithms adopt one of two forms:
(1) empirical expressions that are derived by statistical correlation of
coincident in situ radiometry and a biogeochemical product of
interest (e.g., O'Reilly et al., 1998); and (2) semi-analytical expres-

sions wherein a simplified form of the radiative transfer equation is
inverted to retrieve the product (e.g., Maritorena et al., 2002).Many
examples exist for both forms, all of which exhibit individual
strengths and weaknesses for coastal and estuarine remote sensing.

Chesapeake Bay is one of the largest and historically most productive
estuaries inNorthAmerica. Anextensivewatershedcontributes anannual
average of 2300 m3 s−1 freshwater flow to the Bay with accompanying
dissolved and particulate matter, including nutrients and sediments.
Unfortunately, the Chesapeake Bay suffers from excessive anthropogenic
nutrient loading (Fisher et al., 2006; Malone, 1992) and, consequently,
intense seasonal anoxia (Hagy et al., 2004; Kemp et al., 2005). As such,
considerable effort has focused on the relationship of freshwaterflowand
nutrient input to water quality, expressed as elevated algal biomass
(Maloneet al.,1996) andprimaryproductivity (Hardinget al., 2002).Algal
biomass, commonly quantified as the concentration of the phytoplankton
pigment chlorophyll-a (Ca; mg m−3), is an important indicator of
eutrophication in marine ecosystems (Smith, 2006).

Long-term (e.g., decadal) time-series of in situ measurements
currently provide the main data source for evaluating water quality. The
Chesapeake Bay Program (CBP), a cooperative effort between the federal
government (e.g., U.S. Environmental Protection Agency) and state and
local governments within the Chesapeake Bay watershed, initiated a
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Water Quality Monitoring Program in 1984 to facilitate watershed
restoration efforts (Chesapeake Bay Program, 1993). The CBP selected
49 stations in themainstemBay to be sampled approximatelymonthly to
measure 19 hydrographic water quality parameters. Unfortunately, the
time-series remains temporally and spatially discontinuous and suscep-
tible to unfavorable sampling conditions (e.g., poor weather) that may
interrupt in situ data collection. Data products from SeaWiFS andMODIS-
Aqua have an advantage over in situ and aircraft measurements in this
regard given their consistent, frequent, and high density sampling of
Chesapeake Bay (limited, to a first order, only by cloud cover).

The CBP Water Quality Monitoring Data set provides a unique
opportunity to compare decade-long time-series of satellite and
in situ Ca observations of a highly variable and stressed ecosystem. A
time-series of this length permits separation of sampling variability
from geophysical change and facilitates understanding of how the
ecosystem responds to stresses. Space borne sensors with the ability
to capture phytoplankton dynamics and hydrographic phenomena in
such a geographically confined, dynamic environment provide novel
data sources for ecosystem management. To this end, we present a
case study that evaluated SeaWiFS and MODIS-Aqua time-series of Ca
in Chesapeake Bay using the CBP Water Quality Monitoring Data set.
Harding et al. (2005) and Signorini et al. (2005) validated Ca retrievals
from SeaWiFS in the Bay using temporally limited in situ data sets. To
our knowledge, similar analyses have yet to be executed for MODIS-
Aqua or for the full decade-long SeaWiFS time-series.

We describe the spatial and temporal variability of SeaWiFS and
MODIS-Aqua Ca estimates in the Chesapeake Bay with the goal of
evaluating the performance of two bio-optical algorithms, the congruity
of the two sensors, and the applicability of these data for water quality
monitoring. Our four step approach begins with a brief review of the Ca
algorithms (one for each algorithmic form), followed by an explanation
of the satellite and in situ data acquisition and preparation. We then
quantify the long-term accuracies of the remote-sensing algorithms
using in situ data as ground truth. Finally, we assess the consistency of Ca
estimated fromSeaWiFS andMODIS-Aqua for theBay.Weused standard
(operational) atmospheric correction and bio-optical algorithms for this
study to establish baseline quantification of algorithm performance and
sensor congruence. In doing so, we illustrate the sensitivity of the
approaches to sensor spectral resolution and the benefits of regional
algorithm parameterization.

2. Methods

2.1. Bio-optical algorithms

The types and relative concentrations of optically active constitu-
ents in the water column (e.g., algae and chromophoric dissolved
organic matter) largely determine the spectral shape and magnitude
of Lw(λ). Given the optical complexity of Chesapeake Bay and its
spatial and temporal variability, considerable effort has focused on
developing approaches to relate Lw(λ) to the biogeochemistry of the
Bay (Gitelson et al., 2007; Magnuson et al., 2004; Tzortziou et al.,
2007; Zawada et al., 2007). A survey of all relevant algorithms directed
at this problem is well beyond the scope of this paper. Rather, we focus
on two prominent Ca algorithms currently used in the operational

processing of SeaWiFS and MODIS-Aqua (McClain et al., 2006). Our
goal is to define the state-of-the-art regarding the use of thesewidely-
accessible algorithms for water quality monitoring in Chesapeake Bay,
which will in turn provide a foundation for evaluating novel or
expanded algorithm approaches.

2.1.1. Ocean Chlorophyll algorithm
The first algorithm under consideration is the empirical Ocean

Chlorophyll (OC) formdescribed inO'Reillyet al. (1998),which currently
provides the operational Ca products for SeaWiFS andMODIS-Aqua. This
form describes the polynomial best fit that relates log-transformed Ca to
a log-transformed ratio of remote-sensing reflectances (Rrs; the ratio of
Lw to downwelling surface irradiance; sr−1):

log10 Cað Þ = c0 +
XN
i=1

cilog10
Rrs λbð Þ
Rrs λg

� �
0
@

1
A ð1Þ

where the coefficients c0 and ci are listed in Table 1. The standard SeaWiFS
algorithm, OC4, uses four Rrs(λ), where λb is the greatest of Rrs(443), Rrs
(490), and Rrs(510) and λg is Rrs(555). The shift from 443 to 490 nm and
from 490 to 510 nm generally occurs near Ca of 0.5 and 2 mg m−3,
respectively. TheMODIS-Aqua version, OC3, uses three Rrs(λ), where λb is
the greater of Rrs(443), Rrs(488) and λg is Rrs(551). A three-wavelength
version also exists for SeaWiFS, butwill not be highlighted in this analysis
until section 4.3. The polynomials were derived using the globally-
distributed NASA bio-optical Marine Algorithm Data set (O'Reilly,
personal communication; Werdell & Bailey, 2005). As such, each OC
algorithm describes a mean trend over a wide Ca range and not specific
bio-optical relationships at regional scales or within narrow Ca ranges
(Brown et al., 2008). Data collected in the mainstem Chesapeake Bay
account for 9% of all NOMAD observations and 27% of those from
eutrophic waters (i.e., CaN1 mg m−3) (Fig. 1). Regionally-tuned variants
exist, as will be discussed in section 4.4, but we first evaluate standard
SeaWiFS andMODIS-Aquaalgorithms todevelopabaseline againstwhich
Bay-specific versions can be compared.

Table 1
Coefficients for the OC version 5 algorithms (O'Reilly, personal communication).

λb λg c0 c1 c2 c3 c4

OC4 443,490,510 555 0.3080 −3.0882 3.0440 −1.2013 −0.7992
OC3Sa 443,490 555 0.2409 −2.4768 1.5296 0.1061 −1.1077
OC3Mb 443,488 551 0.2254 −2.6354 1.8071 0.0063 −1.2931

a For SeaWiFS.
b For MODIS-Aqua.

Fig. 1. In situ Rrs maximum band ratios (MBR) versus Ca for the OC3 and OC4 algorithms.
The gray circles show the NOMAD data used to derive the polynomial coefficients for each
expression (N=2389). The black circles indicate stations located within the Chesapeake
Bay,with thenumber of stations also reported. The solid lineswere generatedusing Eq. (1)
and Table 1. Dashed horizontal lines demark Ca=4 mg m−3.
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2.1.2. Garver–Siegel–Maritorena algorithm
The second algorithm is a modified version of the semi-analytical

Garver–Siegel–Maritorenamodel (Maritorena et al., 2002) specifically
parameterized for Chesapeake Bay by Magnuson et al. (2004). This
approach relates spectral inherent optical properties to Rrs(λ) via a
polynomial expansion of the spectrally dependent ratio bb (a+bb)−1,
where a(λ) (m−1) and bb(λ) (m−1) are the marine absorption and
backscattering coefficients, respectively (Gordon et al., 1975). These
spectral coefficients are commonly partitioned into components via
a=aw+aϕ+adg and bb=bbw+bbp, where the subscripts w, ϕ, dg,
and p indicate water (known), phytoplankton, non-algal particles
(NAP)+chromophoric dissolved organic matter (CDOM), and total
particles, respectively. Note that the adg combination cannot currently
be decomposed into its two components using remote-sensing
methods.

In GSM, the components are further expanded into:

a/ λð Þ = Caa
⁎
/ λð Þ; ð2Þ

adg λð Þ = adg 443ð Þexp −S λ − 443ð Þ½ �; ð3Þ

bbp λð Þ = bbp 443ð Þ λ=443ð Þ−η
; ð4Þ

where aϕ⁎ is the Ca-specific absorption coefficient (m2 mg−1), S is the
spectral decay constant for NAP+CDOM absorption (unitless), and η is
the power-law exponent for the particulate backscattering coefficient
(unitless). InGSM, these three terms are assigned constant values. Using
Rrs(λ) as input, the Levenberg–Marquardt nonlinear least-squares
procedure is employed to solve for the remaining unknown terms,
namely Ca, adg(443), and bbp(443). Failure of the model parameteriza-
tion (Eqs. (2)–(4)) to capture natural biogeophysical variability and
ambiguity (nonuniqueness) in the least-squares fit both contribute to
uncertainty in the derived products (Defoin-Patel & Chami, 2007).
Magnuson et al. (2004) derived seasonally and geographically varying
constants for Eqs. (2)–(4) using in situ data from Chesapeake Bay (see
their Table 5).Weevaluate only this regionally-parameterizedversion as
improvements realized with Bay-specific tuning of GSM have been
independently verified (Signorini et al., 2005; Werdell et al., 2007).

2.2. Data acquisition

2.2.1. Satellite data
We acquired ∼6200 SeaWiFS and ∼3000 MODIS-Aqua spatially-

extracted Level-1A files containing all or part of the Bay from the NASA
Ocean Biology Processing Group (McClain et al., 2006). These files
represent a significant time-series for both sensors, spanning
September 1997 to March 2007 for SeaWiFS and June 2002 to
March 2007 forMODIS-Aqua, at ∼1 km2 spatial resolution at nadir. We
generated Level-2 Ca files using the OBPG processing software MSl12
(Franz et al., 2005) configured for SeaWiFS Reprocessing 5.2 and
MODIS-Aqua Reprocessing 1.1, which includes the (Gordon & Wang,
1994) atmospheric correction approach, plus corrections for near-
infrared water-leaving radiances, bi-directional reflectance, and
spectral band-pass effects (Morel et al., 2002; Patt et al., 2003). GSM
processing used all visible SeaWiFS (412, 443, 490, 510, 555, and
670 nm) and MODIS-Aqua (412, 443, 488, 531, 551, 667, and 678 nm)
wavelengths. The operational pixel-masking scheme for each sensor
was adopted, with the exception that pixels with stray light
contamination were retained (i.e., to avoid excluding near-shore
waters where light reflected off land occasionally enters the field of
view of the satellite). Quality control metrics described in Werdell
et al. (2007) were applied to both data sets to ensure that only the
most reliable data were retained for analysis. This included removing
scenes with satellite zenith angles greater than 54° or fewer than 25%
cloud-free marine pixels. In the end, approximately 9 days of data per
month were available for each sensor.

2.2.2. In situ data
We acquired ∼15,750 discrete fluorometric and spectrophotometric

Ca samples from the CBP Water Quality Monitoring Data set (Chesa-
peake Bay Program,1993) (Fig. 2). These data were supplemented with
an additional ∼2300 independent fluorometric Ca samples collected as
part of the NASA Sensor Intercomparison and Merger for Biological and
Interdisciplinary Oceanic Studies (SIMBIOS) and NSF Land Margin
Ecosystem Research (LMER) Trophic Interactions in Estuarine Systems
(TIES) programs (Harding &Magnuson, 2003; Harding et al., 2005). We
considered only near-surface samples (depths≤1 m) for comparison
with the satellite Ca retrievals as the Bay typically has shallow optical
depths. Replicate samples were averaged. Additional details regarding
the post-collection treatment of in situ data, including quality control
metrics, are provided in Werdell and Bailey (2005). Of the ∼18,050
in situ measurements, 8 and 52 stations, respectively, had Cab0.3 and
b1 mg m−3, and 24 stations had values N100 mg m−3. The lowest and
median in situ Ca were 0.17 and 7.7 mg m−3, respectively. Both in situ
and derived Ca exclude contributions by phaeopigments in this analysis.

2.3. Data analysis

2.3.1. Study area and data stratification
The three largest tributaries, the Susquehanna, Potomac, and James

Rivers, contribute over 85% of the total riverine input to the Chesapeake
Bay. The Susquehanna River at the head of the estuary contributes over

Fig. 2. Locations of in situ Ca within the Chesapeake Bay and boxes denoting our adopted
regional designations. The CBP and SIMBIOS/LMER-TIES data sets are indicated by
empty and filled circles, respectively.
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half of the total freshwater and inorganic nutrient inputs (Fisher et al.,
1988). Our study period (September 1997 through March 2007)
encompasses three wet years (1998, 2003, and 2004; upper quartile
compared to mean long-term inflow) and three dry years (1999, 2001,
and 2002; lower quartile),with the remaining four considered normal
(U.S. Geological Survey, 2007). Despite their designation as normal
years, 2000 and 2005 had lowand high inflows, respectively, suggesting
that 1999–2002 to be appreciably dry compared to 2003–2005 (Acker
et al., 2005).

Bio-optical properties of the Bay are predominantly controlled by
the annual cycle of phytoplankton (Marshall et al., 2006) confounded
by spatially and temporally varying sources of terrestrially-derived
dissolved and particulate matter (Gallegos et al., 2005). The winter–
spring freshet from the Susquehanna River largely regulates the
timing and magnitude of the spring diatom bloom (Adolf et al., 2006;
Miller et al., 2006), which is followed by a summer maximum of
primary productivity and increased relative abundance of picoplank-
ton and flagellates (Harding et al., 2002). Seasonal changes in aϕ(λ)
accompany this shift in phytoplankton species. Concentrations of
CDOM and NAP generally correlate with riverine discharge, thereby
creating latitudinal gradients in adg(λ) and S, although this pattern
can be obscured by frontal features, tidal cycles, estuarine circulation,
and sediment resuspension (Harding et al., 2005; Zawada et al., 2007).
The relative concentrations and size distributions of biogenic and
mineral particles, which seldom directly covary, determine bbp(λ) and
η. Gallegos et al. (2005), for example, observed late summer increases
in η in a sub-estuary of the Bay that were consistent with seasonal
reductions in phytoplankton size class and concentrations of
suspended solids (Zawada et al., 2007).

We stratified the Ca data spatially and temporally to facilitate
consideration of scales of biogeochemical variability when interpret-
ing our results. Seasons were defined using the day of year of data
collection, with days 80, 172, 266, and 355 defining the transitions of
winter–spring, spring–summer, summer–fall, and fall–winter
(roughly following Northern Hemisphere equinoxes and solstices).
We adopted the regional stratification of Magnuson et al. (2004), who
defined the boundaries between the Lower–Middle and Middle–
Upper Bays to be latitudes 37.6° and 38.6°N, respectively (Fig. 2). Note
that our spatial stratification follows a latitudinal salinity (Sal)
gradient, with the Upper zone largely oligohaline (Sal≤10), the
Middle mesohaline (10bSal≤20), and Lower polyhaline (SalN20).
We excluded dates when satellite sample sizes for a given regionwere
less than 200 valid (unmasked) marine pixels. For both sensors, the
latter eliminated b4% of all dates for the Lower and Middle Bays, but
excluded an additional 1–3 days per month for the Upper Bay.

2.3.2. Analysis tools
We employed three methods to evaluate the Ca retrievals from

SeaWiFS and MODIS-Aqua using the in situ measurements. The
accuracy of the Ca retrievals was best quantified using this combina-
tion of approaches for validation, as each method had strengths and
weaknesses. First, we statistically compared coincident Level-2
satellite and in situ Ca using the OBPG satellite data product validation
system (Bailey & Werdell, 2006). For this “match-up” analysis, we
retained the default (globally-parameterized) OBPG configuration,
namely: (1) temporal coincidence was defined as ±3 h; (2) satellite
Ca were the filtered median (via the semi-interquartile range) of all
unmasked pixels within a 5×5 pixel box centered on the in situ target;
and (3) satellite Ca were excluded when more than 50% of marine
pixels within this box were masked or when the coefficient of
variation of the valid marine pixels exceeded 0.15. While ecological
patchiness might dictate a smaller box, uncertainty about the median
derived from valid pixels within this box increases in accordance with
the decreased sample size. Harding et al. (2005) derived analogous
results using 3×3 and 5×5 pixel boxes and found reducing the
temporal threshold from same-day to±3 h significantly improved the

quality of Ca match-ups. Tidal and estuarine circulation might dictate
further reduction of the temporal threshold. The corresponding
reduction in the number of match-ups proved too costly for our
analysis, however, as reducing the threshold from ±3 h to ±30 min
resulted in ∼65% fewer match-ups for both sensors. Sensor digitiza-
tion and algorithm noise precluded the use of a single pixel in such
analyses (Hu et al., 2001).

Next, we generated regional histograms and time-series of satellite-
derived and in situ Ca as described in Werdell et al. (2007). For the
histogram analyses, we calculated: (1) relative percent differences
(RPD) between the satellite and in situ distribution medians to quantify
relative biases in the Ca estimates; and (2) percent differences in the
semi-interquartile ranges (SPD) of the distributions to quantify relative
differences in distribution widths (here, the semi-interquartile range is
the range covered byvalues of ln(Ca) such that 50%of ln(Ca) values occur
with equal probability on either side of the median). The reported
percent differences are relative to the in situmeasurement, for example,
100%·(Casatellite/Cain situ−1). We prepared the time-series by calculating
the monthly geometric means of all available (unmasked) data. This
averaging improved the clarity of the time-series and eliminated
anomalous Ca retrievals. Alternate filtering and statistical smoothing
techniques produced slightquantitativedifferences, but revealed similar
spatial and temporal patterns. For Level-2 match-ups and time-series,
only retrievals within 0.001≤Ca≤100mgm−3 were considered, as this
is the effective operational range of the OC and GSM algorithms.

3. Results

3.1. Level-2 match-ups

The comparison of coincident satellite and in situ observations
provided estimates of the accuracy and precision of the SeaWiFS and
MODIS-Aqua data products in Chesapeake Bay. OC-derived Ca for the
Baywere positively biased, as indicated by themedian satellite-to-in situ
ratios of 1.30 and 1.69, respectively (Fig. 3). For comparison, Harding
et al. (2005) and Signorini et al. (2005) reported ratios of 1.97 and 1.24,
respectively, for SeaWiFS (using shorter time-series and previous
SeaWiFS Reprocessing configurations). The elevated retrievals persisted
in all regions of the mainstem Bay, but were most pronounced at the
lowest Ca. As illustrated in Fig. 1, NOMAD Chesapeake Bay stations with
Cab4 mg m−3 are not well represented by either OC3 or OC4 (17
stations), whereas both algorithms clearly bisect those stations with
higher Ca. When only CaN4 mg m−3 were considered, SeaWiFS match-
up ratios andmedian absolute percentdifferences (APD) reduced to 1.03
and 35.3%, respectively. For MODIS-Aqua, however, this reduction in
dynamic range reduced the ratio and APD to only 1.65 and 65.1%,
suggesting that either inadequate sampling (41 stations compared to
252 for SeaWiFS) or that inaccurate reflectance ratios were used as
inputs to OC3. In contrast, GSM-derived Ca maintained nominal biases
for both sensors, with ratios deviating from unity by ∼10%. Despite its
improved match-up accuracy, however, GSM returned 40% fewer
stations for both sensors with Ca between 0.001 and 100 mg m−3. The
APD for GSM improved upon that for OC by 29% for MODIS-Aqua, but
degraded by 9% for SeaWiFS. Unfortunately, match-ups for both sensors
were acquired under a limited range of environmental conditions (e.g.,
variedwater turbidity and solar and satellite geometries), which limited
our interpretation of these results and reinforced the need to consider
these statistics in combination with those from the frequency distribu-
tions and time-series.

3.2. Data distributions

Comparisons of frequency distributions identified relative biases
and differences in dynamic ranges among the satellite and in situ data
sets (Table 2). Here, coincidence is defined only through season and
region, which differs from the Level-2 validation approach presented
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in section 3.1. In situ Ca in the Bay were lognormally distributed over a
broad dynamic range (∼1 to 50 mg m−3) (Fig. 4). SeaWiFS and
MODIS-Aqua Ca exhibited similarly shaped lognormal distributions,
particularly those derived using the OC algorithms, despite an
increased number of observations relative to the sample size of the
in situ data. The similar widths of the OC3- and OC4-derived Ca
suggest the breadth of their dynamic ranges to be consistent with the
in situ Ca, however, positive biases appeared in the Middle region and
intensified in the Upper region. Few Cab3 mg m−3 were retrieved,
similar to the results in section 3.1. In contrast, GSM returned an
increased number of low (b1 mg m−3) and high (N30 mg m−3) Ca,
effectively flattening the histogram relative to the in situ measure-
ments. For both sensors, GSM returned ∼41, 38, and 86% fewer viable
pixels on average than the OC algorithms in the Lower, Middle, and
Upper Bay, respectively.

Differences between the remotely-sensed and in situ Ca frequency
distributions showed strong latitudinal dependencies. SeaWiFS and
MODIS-Aqua Ca from both algorithms showed marginal long-term
biases compared to in situ data in the Lower Bay, at least with regard
to their modes (Fig. 4). Full-year (not stratified by season) SeaWiFS Ca
distributions from OC4 also aligned well with the in situ data in the
Middle Bay, whereas the full-year MODIS-Aqua Ca from OC3 showed
moderate, positive departures. Full-year SeaWiFS Ca distributions
fromGSM remained similar for all Bay regions, while those forMODIS-
Aqua did so for the Lower and Middle regions. The RPD and SPD for
both sensors reached their respective maxima in the Upper Bay,
independent of season, emphasizing the inability of the algorithms to
adequately account for non-algal contributions to Rrs(λ) in optically
complex locations (Table 2). Interestingly, MODIS-Aqua retrievals
from both algorithms in the Upper Bay far exceeded those of SeaWiFS
in this region (by factors of two or more). At higher latitudes, GSM
from both sensors generally reported lower RPD relative to the OC
algorithms, but higher SPD (broad, flat histograms whose centers
more closely matched the in situ distributions).

3.3. Time-series

Comparison of time-series identified relative biases and seasonal
differences amongst our coincident data sets. In the Lower and Middle
Bays, moderate biases persisted inmonthly comparisons of in situ Cawith
the retrievals from OC (Fig. 5) and GSM (Fig. 6), although satellite esti-
mates largely fell within one standard deviation of in situ averages. Both
algorithms exhibited seasonal patterns in these zones (e.g., distinct
winter–spring blooms) and paralleled the interannual variability of in situ

Table 2
Percentdifferencesof satellite and in situ Ca distributionmedians (RPD)and semi-interquartile
ranges (SPD).

SeaWiFS MODIS-Aqua

OC4 GSM OC3 GSM

RPD SPD RPD SPD RPD SPD RPD SPD

Upper Bay Spring 76.6 22.3 58.5 94.7 166.2 5.7 161.9 171.3
Summer 62.2 122.3 −31.1 90.9 124.2 44.0 64.5 218.0
Fall 74.1 54.8 17.2 182.4 187.8 27.7 227.4 208.1
Winter 81.5 46.0 29.6 172.5 185.6 28.3 124.4 172.6
All 53.9 44.1 3.6 132.1 138.4 16.9 124.1 174.2

Middle Bay Spring 45.2 6.2 55.7 5.9 99.2 −10.7 54.2 44.9
Summer 24.1 40.0 −28.8 33.8 66.8 26.2 −39.3 44.2
Fall 22.1 5.7 −2.3 88.4 96.1 16.5 −3.5 107.6
Winter 55.5 38.6 3.2 157.3 143.7 10.4 −4.3 157.5
All 28.9 26.1 −0.1 82.3 93.1 13.5 −7.8 104.6

Lower Bay Spring 21.7 −15.1 56.0 −2.1 67.6 −7.4 47.3 27.0
Summer 1.5 9.1 −33.6 10.1 24.7 30.5 −45.0 54.5
Fall −13.9 −34.7 −26.9 30.2 17.6 −14.0 −22.0 69.7
Winter 22.2 25.6 −7.7 194.0 120.5 23.1 −4.6 186.7
All 1.7 −5.3 −7.6 54.7 47.1 10.6 −10.3 88.6

RPD were calculated as 100%·(Ca
satellite/Ca

in situ−1). Use of the median Ca to calculate
RPD is prudent given the unimodal symmetry of the lognormally transformed data
and the proximity of these values to the distributionmodes. Semi-interquartile ranges
(SIQR) were computed for ln(Ca

satellite) and ln(Ca
in situ). SPD were calculated as

100%·[exp(SIQRsatellite−SIQRin situ)−1].

Fig. 3. SeaWiFS and MODIS-Aqua satellite-to-in situ Ca validation results for the OC and GSM algorithms. N, ratio, and APD indicate the sample size, median satellite-to-in situ ratio,
andmedian absolute percent difference, respectively. The APD for eachmatch-up is calculated via 100% |Casatellite/Cain situ−1|. The crosses, empty squares, and empty diamonds denote
Upper, Middle, and Lower Bay stations, respectively. The solid line demarks a 1:1 relationship. In the map, empty and filled circles show the locations of SeaWiFS and MODIS-Aqua
match-ups, respectively.
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Ca. Thealgorithmsalso captured the transition fromdryconditions (1999–
2002) to wet conditions (2003–2005). For our study period, the Bay
experienced enhanced winter–spring blooms, stronger and longer-lived
summer blooms, and increased long-term median in situ Ca (from ∼6 to

10 mg m−3, ∼8 to 11 mg m−3, and ∼10 to 12 mg m−3 in the Lower,
Middle, and Upper Bays, respectively) as it transitioned into a series of
wet years. Unfortunately, satellite retrievals using OC and GSM in the
Upper Bay did not display comparable seasonal patterns to in situ Ca.

Fig. 4. In situ Ca distributions (thick lines) in the Lower, Middle, and Upper Bays compared to OC and GSM retrievals for SeaWiFS (thin solid) andMODIS-Aqua (thin dashed). OC4 was
used for SeaWiFS and OC3 for MODIS-Aqua. Samples sizes (in million pixels) for satellite retrievals are provided in each panel, with SeaWiFS indicated by S and MODIS-Aqua
indicated by A. In situ sample sizes are 7204, 5814, and 3660 for the Lower, Middle, and Upper Bay, respectively. Data from all four seasons are included.

Fig. 5. Monthly averages of in situ Ca (thin lines) in the Upper, Middle, and Lower Bays compared to OC retrievals for SeaWiFS (OC4; empty squares) and MODIS-Aqua (OC3; filled
circles). The grey shaded area represents one standard deviation about the in situ averages. The RPD reported in the text was calculated as 100%·(median(Casatellite/Cain situ)−1) using
each monthly satellite and in situ pair.
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Consistent with results in sections 3.1 and 3.2, the GSM sample sizes for
both sensors' time-series where retrieved Ca fell between 0.001 and
100 mgm−3 trailed those for the OC algorithms by ∼50%. The persistent
differences in sample sizes for the algorithms will be reviewed in
section 4.1.

SeaWiFS OC4 retrievals consistently overestimated in situ Ca by 30
and48% for theLower andMiddle Bays, respectively, in dry years (Fig. 5).
These RPD fell to 11 and 23% inwet years. Biases in Upper Bay retrievals
were less responsive to inflowvariability, averaging39% in dry years and
29% inwet years. Analyses of streamfloweffects were not performed for
MODIS-Aqua, which began data collection in mid-June 2002 and has
observed predominantly wet conditions. MODIS-Aqua OC3retrievals
overestimated in situ Ca by 20, 51, and 97% in the Lower, Middle, and
Upper Bays, respectively. Over comparable time spans, theMODIS-Aqua
RPD compare well with those for SeaWiFS in the Lower Bay, reasonably
well in theMiddle Bay (possibly degrading because of several outliers in
2004), and poorly in the Upper Bay. The monthly MODIS-Aqua Ca from
OC3 show little seasonality (not unlike SeaWiFS) in the Upper Bay, with
values exceeding the in situ measurements twofold.

Unlike the consistent positive bias of the OC4-derived Ca, SeaWiFS
GSM retrievals overestimated in situ Ca in the winter–spring, but
underestimated in situ Ca in the summer–fall (Fig. 6). For our full
study period, RPD increased from−36 and−21% during summer–fall
to 16 and 17% during winter–spring in the Lower and Middle Bays,
respectively. Further, Ca retrievals from GSM responded marginally to
increased streamflow, with RPD shifting from −15 and −6% for dry
conditions to −20 and −1% for wet conditions in the Lower and
Middle Bays, respectively. Clearly, negative biases that emerged
between each winter–spring bloom controlled the magnitudes of
the long-term offsets. As was the case for the OC retrievals, reasonable
Ca were occasionally achieved in the Upper Bay, but captured little
seasonal variability. MODIS-Aqua failed to improve upon the long-
term biases of SeaWiFS for similar time ranges, and reported larger
seasonal amplitudes (i.e., greater overestimates of in situ Ca inwinter–
spring and increased underestimates in summer–fall). For the Lower
and Middle Bays, MODIS-Aqua reported long-term RPD of −30 and
−32%, but summer–fall and winter–spring RPD of −48 and −38%

and −2 and −17%, respectively. MODIS-Aqua produced highly
variable GSM-derived Ca in the Upper Bay (Fig. 6).

4. Discussion

4.1. Algorithm performance

The Level-2 match-ups, frequency distributions, and time-series
convey qualitative and quantitative information in different ways,
both visually and statistically. Summarizing section 3, OC-derived Ca
from SeaWiFS overestimated in situ observations on the order of 10,
30, and 50% in the Lower, Middle, and Upper Bays, respectively,
although these statistics varied strongly by season. Likewise, OC-
derived Ca from MODIS-Aqua generally exceeded in situ observations
by 40, 70, and 100% in these regions. GSM-derived Ca from SeaWiFS
matched in situ observations within ±25% in the Lower and Middle
Bays, although these statistics also varied strongly by season. GSM-
derived Ca from MODIS-Aqua largely fell within the same range, but
showed greater negative biases. For both sensors, broad dynamic
ranges confounded the interpretation of GSM retrievals of Ca in the
Upper Bay. With regard to water quality monitoring, OC algorithms
returned Ca with realistic variability, as indicated by the dynamic
range of the retrievals, but with spatially dependent, positive biases.
The effectiveness of GSM for water monitoring is more difficult to
assess given its increased variability. Both algorithms showed bias
shifts as the seasons progressed, with zonal dependence in the
direction of the shifts, which indicates a temporally-dependent ability
to capture seasonal phenomena (Table 2). Interestingly, lowest RPD
from both algorithms were often accompanied by the highest SPD,
emphasizing the need to consider both statistics.

OC-derived Ca consistently exceeded in situ observations, but were
constrained to a narrow dynamic range, and thereby showed less
variability in magnitude compared to the GSM retrievals. Strong
positive biases were evident in the Upper Bay and lower Ca values
(b4 mg m−3) were under-represented compared to extensive in situ
observations. We largely attribute the improved agreement with
ground truth for years with increased streamflow to the increased

Fig. 6.Monthly averages of in situ Ca (thin lines) in the Upper, Middle, and Lower Bays compared to GSM retrievals for SeaWiFS (empty squares) and MODIS-Aqua (filled circles). The
grey shaded area represents on standard deviation about the in situ averages.
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phytoplankton biomass in the wet years. This increased biomass
pushed Ca into the range where the OC algorithms performed best in
the Bay, namely ∼5≤Ca≤20 mg m−3. The OC algorithms showed the
least bias in the summer, possibly owing to 45% of Chesapeake Bay
stations in NOMAD (the tuning dataset) having been visited between
June and August, although they also report the largest SPD in this
season.

GSM-derived Ca showed less bias relative to OC values in the Lower
andMiddleBays, but increasedoverall variability, as indicatedbyscatter in
the Level-2 match-ups (Fig. 3), widths of the data distributions (Fig. 4),
and seasonal amplitudes of the time-series (Fig. 6). The similar Ca
magnitudes retrieved in dry and wet conditions suggest GSM to be
insensitive to the effects of changes in streamflow. For example, GSM
moderately underestimated Ca in dry summers, but significantly under-
estimated Ca inwet summers, indicating imperfect algorithm parameter-
ization for higher inflow conditions. The assigned aϕ⁎(λ) and S, for
example, may not have perfectly captured the interannual variabilities of
the annual phytoplankton cycle (Adolf et al., 2006; Marshall et al., 2006)
and inflowof riverinehumusand sediments, respectively.Magnusonet al.
(2004) developed their regional GSM parameterization using data
collected between 1996 and 2002, encompassing both dry and wet
conditions. In general, the wide Ca distributions from GSM illustrate the
challenge of algorithm parameterization in highly productive and
stratified waters. In all three Bay regions, GSM retrievals overestimated
Ca in the spring and underestimated Ca in the summer. GSM retrievals
were least biased in the fall and winter, but had elevated SPD in these
seasons (common S and aϕ⁎(λ) were used for both, as Magnuson et al.
(2004) did not collect winter data).

The empirical algorithms returned a greater number of valid Level-
2 pixels than the semi-analytical approach. Recall, we considered only
retrievals within 0.001bCa≤100 mg m−3 to be valid, and clouds
equally confounded both algorithmic forms. GSM and other “spectral-
matching” algorithms fail in the presence of negative Lw(λ), which
commonly occur in the presence of absorbing aerosols that cannot be
detected by the atmospheric correction process (Werdell et al., 2007).
This misinterpretation of aerosol type over the Bay leads to under-
estimates of blue Lw, where the signals are already low because of high
adg (and aϕ to a lesser degree) in that spectral region (Holben et al.,
2001). Note, low red Lw signals cause analogous inversion problems in
the open ocean. With regard to Level-2 spatial coverage in the Bay, OC
algorithms outperformed GSM as they require only wavelengths
between ∼490 and 555 nm to return reasonable Ca. Note, however,
that the spatial and temporal aggregation of the Level-2 data into
Level-3 monthly averages equalizes the spatial coverage of both
algorithm approaches. For a case study in April 2006, Werdell et al.
(2007) reported the percentage of valid Ca retrieved in the Bay
increased from 45% at Level-2 to 65 and 75% at Level-3 at 2 and 4 km
spatial resolution, respectively.

4.2. Satellite performance

SeaWiFS-derived Ca for both algorithm forms most closely
matched the in situ measurements. In general, the magnitude of
MODIS-Aqua retrievals exceeded those from SeaWiFS (more so with
increasing latitude) for the years 2002 to 2006. RPD of the year-long
data distributions showed MODIS-Aqua Ca from the OC algorithms
were 45, 50, and 55% higher than those for SeaWiFS in the Lower,
Middle, and Upper Bays, respectively, although SPD differed by only
±15% on average. The time-series biases were less severe, reporting
Ca increases of only 15, 19, and 43% in the three regions (also
calculated relative to SeaWiFS). GSM retrievals for MODIS-Aqua more
closely matched those from SeaWiFS, with the exception of the Upper
Bay (Fig. 4.). RPD of the year-long data distributions showed GSM-
derived Ca from MODIS-Aqua fell below those from SeaWiFS by only
−3 and−8% in the Lower and Middle Bays, but exceeded SeaWiFS by
116% in the Upper Bay, with SPD differing by 17% on average. The time-

series biases were more consistent, reporting values of −20% for all
three regions.

Differences in Ca from SeaWiFS and MODIS-Aqua trace to
differences in their respective radiometry and to differences in the
satellite-specific bio-optical algorithms. In effect, we assessed the
tolerance of each Ca algorithm to regional errors in Lw(λ) and
evaluated the full sensor system (instrument calibration plus atmo-
spheric correction algorithms plus bio-optical algorithms). We
explore differences in SeaWiFS and MODIS-Aqua radiometry and
algorithms in this section and the subsequent section, respectively.
SeaWiFS and MODIS-Aqua radiances maintain long-term relative
biases, the magnitudes of which vary by wavelength, season, and
trophic level. For example, while radiative transfer theory and field
observations suggest that Lw(551) exceeds Lw(555) by several percent
in most waters, the long-term ratio of MODIS-Aqua Lw(551) to
SeaWiFS Lw(555) is ∼0.95 (Franz et al., 2005). Reducing the Rrs
maximum band ratio used as input into OC3 by 10% (if, e.g., MODIS-
Aqua Lw(551) are 10% low) raises the derived Ca by ∼35% in eutrophic
waters (Fig. 1). A spectral-matching algorithm requires more accurate
input Rrs(λ) than its empirical counterparts to retrieve reasonable Ca.
We have focused only on errors associated with GSM parameteriza-
tion and difficulties with spatial and temporal transitions within this
parameterization. The sensitivity of Ca from GSM to errors in the Rrs
(λ) used as input has yet to be explored for Chesapeake Bay. A full
discussion of SeaWiFS and MODIS-Aqua radiometric differences
exceeds the scope of this work; we simply reiterate that differences
in radiometry lead to significant differences in derived Ca.

The evaluation of satellite-derived Rrs(λ) in the Bay would provide
an excellent precursor to this paper, but the scarcity of high-quality
radiometry precludes the execution of similarly robust spatial and
temporal studies (radiometric measurements are not made as part of
the CBP Water Quality Monitoring program). Harding et al. (2005),
Signorini et al. (2005), and Werdell et al. (2007) reported acceptable
Lw(λ) Level-2 match-ups for SeaWiFS in the lower half of the Bay
using smaller data sets. To our knowledge, similar analyses have yet to
be conducted for MODIS-Aqua. To first order, Ca retrievals depend
largely on the efficacy of the atmospheric correction process, which
may be problematic in coastal environments. For example, the
corrections for near-infrared water-leaving radiances, bi-directional
reflectance, and spectral band-pass effects all rely on bio-optical
models that can perform poorly in optically complex waters and do
not permanently represent all geographic zones (Morel et al., 2002;
Patt et al., 2003). Adjacency effects on the satellite radiometry become
prominent where the Bay narrows, requiring an additional correction
(applied in this analysis) to remove “stray” light reflected by
neighboring land (Barnes et al., 1995; Santer & Schmechtig, 2000).
While recent studies suggested improved methods for estimating
aerosol radiances over coastal or turbid waters, few have been
validated comprehensively against ground truth (Ahmad et al., 2007;
Kuchinke et al., 2009; Wang & Shi, 2005). Conceivably, the use of
regionally specific aerosol models will improve Rrs(λ) retrievals if, for
example, they can be developed using in situ measurements of
atmospheric properties over the Bay (Holben et al., 2001).

4.3. Spectral considerations

The two OC algorithms, OC3 and OC4, originated from a common
in situ data set, but inherent differences remain, particularly at high
Ca (Morel et al., 2007). When Ca rises above ∼2 mgm−3, λb sequences
from 490 to 510 nm for OC4, but remains at 490 nm for OC3, resulting
in a different, less variable, data series against which to regress Ca
(Fig. 1). To quantify the differences in performance of OC3 and OC4 in
the absence of satellite-to-satellite radiometric biases, we reprocessed
the full SeaWiFS time-series using a SeaWiFS-specific version of OC3
(Table 1). The full-year SeaWiFS Ca from OC3 (Fig. 7) behaved
similarly to those for MODIS-Aqua (Fig. 4), with biases increasing
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strongly with increasing latitude. RPD of the frequency distributions
showed Ca fromOC3were 19, 25, and 37% higher than those for OC4 in
the Lower, Middle, and Upper Bays, respectively, with SPD increasing
accordingly by 20, 26, and 48%. Similarly, biases in the Ca time-series
(data not shown) increased by ∼20% for all three zones. For
comparison, the SeaWiFS OC3 time-series showed little bias relative
to the MODIS-Aqua time-series, reporting differences of only−7,−3,
and 19% for the Lower, Middle, and Upper Bays, respectively. The latter
suggests that a sizeable portion of the SeaWiFS and MODIS-Aqua
differences stem from algorithm differences. OC4 outperformed OC3
in the mainstem Bay, the difference being the inclusion of a useful
“green” band (510 nm). The proximity of the 531 nm channel on
MODIS-Aqua to its 551 nm channel precludes its viable use in an OC
algorithm as the two overly covary.

Given that negative Rrs(λ) prevent GSM from returning reasonable
Ca, we further examined whether ignoring portions of the spectra
increased the volume of retrievals without sacrificing overall data
quality. Using Level-2 match-up data, were calculated SeaWiFS Ca for
three reduced-wavelength scenarios (five input Rrs(λ) rather than six)
for comparisonwith the standard results in section 3.1. We sequentially
removed one blue (412 nm), green (510 nm), and red (670 nm) band to
evaluate the importance of each spectral region. Spectral-matching
algorithms require the assignment of a unique spectral shape to each
water column constituent of interest (Eqs. (2)–(4)). Our interpretation
of these match-ups, therefore, relies largely on differences in spectral
shapes of adg(λ) and aϕ(λ). We adopted spectrally flat bbp(λ) from
Magnuson et al. (2004), which minimizes its role in this analysis. From
400 to 700 nm, the predominant differences in adg(λ) and aϕ(λ) are

depressed algal absorption from 400 to 440 nm and enhanced algal
absorption from 600 to 700 nm. Rrs(412) and Rrs(670) are critical for
distinguishing between these types of absorbing material. From 490 to
550 nm, the aϕ(λ) proposed byMagnuson et al. (2004) are typically less
concave than adg(λ) and have increased spectral slopes. Note thatminor
absorption peaks in this limited spectral range are not captured by the
SeaWiFS spectral suite.

Reducing the number of input Rrs(λ) for GSM did not sufficiently
improve its spatial coverage towarrant the accompanying increase in Ca
variability. The loss of any band confounded the ability of GSM to
distinguish Ca from NAP+CDOM (Fig. 8). This was most obvious when
we ignored Rrs(412) and Rrs(510), as the sample sizes (N) were
unchanged relative to the full-spectrum results, but positive biases
appeared (ratios of 1.39 and 1.22, respectively) and APD increased
significantly (∼50 and 20%). Note the expanded dynamic range of GSM-
derived Ca for both cases. GSM ineffectively distinguished between Ca
and NAP+CDOMwith Rrs(412) absent as the inversion no longer made
use of the unique spectral differences between adg(412) and aϕ(412).
The match-up variability increased, but the retrieved Ca remained in a
reasonable range (0.001 to 100 mg m−3) because of the dominant
contribution of aϕ(670) to Rrs(670), which effectively constrained the
inversion system. An additional 14 stations returned valid Ca, however,
themedian satellite-to-in situ ratio for only those stations with negative
Rrs(412) was 3.7. GSM also imperfectly distinguished between Ca and
NAP+CDOMwith Rrs(510) absent as the inversion incorrectly assumed
a linear slope between Rrs(490) and Rrs(555). This portion of the visible
spectrum is typically concave, and themagnitude of the inward curve is
determined by the relative contributions of Ca and NAP+CDOM. In

Fig. 7. In situ Ca distributions (thick lines) in the Lower, Middle, and Upper Bays compared to SeaWiFS retrievals from OC4 (thin solid) and OC3 (thin dashed) algorithms. Samples
sizes (in million pixels) for satellite retrievals are provided in each panel. in situ sample sizes are as reported for Fig. 4. Data from all four seasons are included.

Fig. 8. SeaWiFS satellite-to-in situ Ca validation results for the GSM algorithm for three varied Rrs(λ) spectral resolutions. From left to right, the wavelength suites used are 443, 490,
510, 555, and 670 nm; 412, 443, 490, 555, and 670 nm; and 412, 443, 490, 510, and 555 nm. Definitions for the validation statistics and symbols are as in Fig. 3. The solid line demarks a
1:1 relationship.
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contrast, GSM produced favorable results with Rrs(670) absent, yet N
was reduced by half. With the red portion of the spectrum now
unconstrained (i.e., the inversion no longer exploits the dominant
contribution of aϕ(670) to Rrs(670)), the magnitude of the retrieved adg
(443) increased to unreasonable levels (Fig. 9). The retrieved Ca fell

well below 0.001 mg m−3 when GSM returned adg(443) in excess of
∼0.5 m−1, resulting in a strongly bimodal distribution. Further analysis
of the choice of inversion method (e.g., Levenberg–Marquardt) is
beyond the scope of this work.

4.4. Regional algorithms

OC-derived Ca from SeaWiFS and MODIS-Aqua showed positive,
latitudinal biases relative to in situ measurements and may not yet be
sufficiently accurate for Bay water quality monitoring. Recall, however,
we used globally-parameterized OC coefficients (Table 1), whereas
several options for regional tuning remain to be exploited. Regression
coefficients derived using a Bay-only data set provide the most direct
approach. For example, Werdell et al. (2007) presented a Bay-specific
version of OC3 and reported MODIS-Aqua Level-2 match-up APD and
median satellite-to-in situ ratios decreased from70% and 1.70 to 35% and
1.17, respectively. Given that several other research groups have also
used such an approach to retrieve reasonable Ca (e.g., Old Dominion
University and NOAA CoastWatch–East Coast Node), we explored two
alternative mechanisms for regional OC algorithm tuning.

Hyde et al. (2007) proposed an empirical correction for SeaWiFS
OC retrievals in Massachusetts Bay based on type II linear regression
(their Eq. (3)):

OCcorr = 101 log10 OCð Þ− α
β

� �
ð5Þ

where α and β are the regression slope and intercept, respectively. We
explored the effectiveness of such an approach for Chesapeake Bay
using Level-2 match-up data (Fig. 3). The resulting α and β were
0.249 and 0.844 for SeaWiFS and 0.264 and 0.960 for MODIS-Aqua.
Interestingly, the SeaWiFS values closely resemble the 0.248 and 0.832
reported by Hyde et al. (2007) for Massachusetts Bay. RPD of the year-
long data distributions showed SeaWiFS Ca from OCcorr reduced to
−1and 17% in the Middle and Upper Bays, but increased to −22% in
the Lower Bay (Fig. 10). For MODIS-Aqua, RPD reduced to−4, 26, and

Fig. 9. Comparison of SeaWiFS GSM-derived adg(443) and bbp(443) calculated using
five and six visible Rrs(λ) as input (412, 443, 490, 510, and 555 nm versus 412, 443, 490,
510, 555, and 670 nm, respectively). Gray circles indicate retrievals where derived Ca fall
between 0.001 and 100 mg m−3. Black circles indicate retrievals where derived Ca fall
below 0.001 mg m−3. Sample sizes for each are reported.

Fig. 10. In situ Ca distributions (thick lines) in the Lower, Middle, and Upper Bays compared to OCcorr and OCsat retrievals for SeaWiFS (thin solid) and MODIS-Aqua (thin dashed).
Samples sizes (in million pixels) for satellite retrievals are provided in each panel, with SeaWiFS indicated by S and MODIS-Aqua indicated by A. In situ sample sizes are as reported
for Fig. 4. Data from all four seasons are included.
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52% in the Lower, Middle, and Upper Bays, respectively. For both
sensors, thewidths of theOCcorr distributionsmatched those of the in situ
observations almost exactly. The time-series biases had similar trends,
with values of−9,11, and10% in the three zones for SeaWiFS and−20, 6,
and 38% forMODIS-Aqua (data not shown). Level-2match-up results for
OCcorr did not provide independent verification of this approach,
however, as we used these data in the derivation of OCcorr.

Next, we derived a series of regression coefficients (OCsat) using
the in situ Ca and satellite Rrs(λ) from Level-2 match-up data. Using
satellite radiometry in lieu of in situ measurements provides some
advantage, as the bio-optical algorithm now directly addresses biases
from the atmospheric correction process. Given the limited MODIS-
Aqua sample size, we combined data from the two sensors and
focused solely on OC3. The limited dynamic range of log10(Ca) in this
data set led us to abandon the polynomial expansion in favor of type II
linear regression to derive an intercept (c0 in Eq. (1)) and slope (c1) of
0.0667 and −2.874, respectively. RPD of the year-long data distribu-
tions showed SeaWiFS Ca from OCsat reduced to 6 and 30% in the
Middle and Upper Bays, but increased to −17% in the Lower Bay
(Fig. 10). MODIS-Aqua RPD reduced to −8, 16, and 44% in the Lower,
Middle, and Upper Bays, respectively. Again, the widths of the OCsat

distributions for both sensors matched those of the in situ observa-
tions almost exactly. The time-series biases had similar trends with
values of −6, 13, and 16% in the three zones for SeaWiFS and −22, 2,
and 37% for MODIS-Aqua (data not shown). As we observed for OCcorr,
the Level-2 match-up results for OCsat did not provide independent
verification of this approach, as we used these data to develop OCsat.

Both OCcorr and OCsat showed improved Ca retrievals compared to
their global counterparts (Fig. 10). For both sensors, Ca retrievals closely
matched in situ measurements in the Middle Bay. Some positive biases
remained in the Upper Bay retrievals, but RPD of the year-long
distributions were reduced to one-third or one-half of their original
values. In the Lower Bay, RPD for OCcorr andOCsat showed slight negative
biases in both the time-series (more so for MODIS-Aqua)and data
distributions (more so for SeaWiFS), although both had identical
dynamic ranges with in situ Ca. SeaWiFS retrievals from both regional
algorithms underestimated Ca in the Lower Bay more severely during
wet years, possibly owing to 81% of the SeaWiFS Level-2 match-up
stations having been visited pre-2003 (biases of −2 and −14% for dry
andwet years forOCcorr and 6 and−17% fordry andwet years forOCsat).
Conceivably, differences in satellite and in situ sampling and sample
sizes contributemost significantly to theseminor biases, rather than the
bio-optical algorithms and satellite radiometry used as input.Wherever
variabilities of OCcorr andOCsat did not improve upon those for the global
algorithms, the removal of biases in the Ca retrievals argues in favor of
such approaches for satellite-based Bay water quality monitoring. We
expect the results to improve further with additional algorithm
refinements as new data become available to support seasonally-
dependent versions of OCcorr and OCsat.

Alternative algorithmic approaches exist with the potential to
improve satellite Ca retrievals in the Bay. For example, an emerging
body of work encourages Rrs band ratio algorithms to include red and
near-infraredwavelengths (Gitelson et al., 2007; Tzortziou et al. 2007).
Our understanding of the behavior of marine absorption and back-
scattering properties within the Bay has also increased (Gallegos et al.,
2005; Tzortziou et al., 2006; Zawada et al., 2007). In the samemanner,
the bio-optical data described by Magnuson et al. (2004) have
expanded sufficiently to warrant the reparameterization of GSM.
This might include novel mechanisms for transitioning between
spatial and temporal boundaries and accounting for varied streamflow.
Naturally, the latter would require ancillary geophysical inputs or be
more suitable for retrospective processing, as operational ocean color
approaches currently lack predictive capabilities. Mechanisms for
transitioning between trophic levels or bioregimes are emerging,
which showpromise for improved bio-opticalmodel parameterization
if they can be developed on regional levels (Devred et al., 2007; Moore

et al., 2001). Improved spatial resolution is also desirable, and the land
and atmosphere channels on MODIS-Aqua provide a possible avenue
for decreasing the satellite footprint (Franz et al., 2006). Given the
spectral limitations of the higher resolution visible bands (469 and
555 nm at 500m resolution and 645 nm at 250m resolution) and their
reduced signal-to-noise ratios, sacrifices in algorithm quality accom-
pany their use (although highly scattering coastal waters often have
increased radiometric signals relative to the open ocean in green and
red spectral bands).

5. Conclusions

We have presented the regional and seasonal variability of Ca from
SeaWiFS and MODIS-Aqua in the Chesapeake Bay. Specifically, we
compared satellite retrievals from two common approaches with in
situ measurements to establish baseline quantification of algorithm
and sensor performance against which novel approaches might be
compared. Ca from SeaWiFS and MODIS-Aqua were reasonable in the
Lower and Middle Bays, but the accuracy of the retrievals degraded
with increasing latitude as the marine optical complexity increased
northward. Retrieving high-quality satellite radiances in the Upper
Bay was increasingly difficult because of the narrowing shape of the
estuary, the increased turbidity, and the proximity to sources of urban
aerosols that confounded the atmospheric correction process. We
found advantages of the OC algorithms to include superior spatial
coverage and decreased sensitivity to errors in the input radiometry.
Advantages of the GSM algorithm as parameterized by Magnuson
et al. (2004) include its ability to simultaneously retrieve additional
marine optical properties and its spatially and temporally transition-
ing parameterization. Overall, the regionally-tuned OCcorr and OCsat

algorithms performed best throughout the mainstem Bay, offering the
combination of reasonable accuracy and high spatial coverage. While
GSM produced good results under many conditions, it remained
highly sensitive to input Rrs(λ) and its internal parameterization (e.g.,
S, η, and aϕ⁎(λ)), departures from which (through the natural
biogeochemical variability of the Bay) increased its overall variability.
The OC algorithms most naturally represented “mean” Bay conditions
and better constrained the retrieved Ca dynamic range. We demon-
strated the value of “green” spectral resolution (e.g., 510 nm) for
coastal ocean color applications, which provides a cautionary tale for
future satellite instruments whose proposed data processing includes
similar empirical or spectral-matching algorithms. Moreover, we
found that reducing the spectral resolution of either algorithm was
disadvantageous for water quality monitoring in the Chesapeake Bay.

The CBP Water Quality Monitoring Data set provided a unique
opportunity to compare decade-long time-series of satellite and
in situ Ca observations.While the designation of an uncertainty budget
for SeaWiFS- and MODIS-Aqua-derived Ca would provide a desirable
product of this paper, we were hesitant to assign a restrictive one,
given the statistical incompatibility of our varied analyses. The Level-2
match-ups, data distributions, and time-series all described depar-
tures of the satellite retrievals from ground truth estimates, but exact
quantities and magnitudes varied based on the spatial and temporal
binning applied within each analysis. Nevertheless, all three analyses
converged on the direction of the differences (e.g., positive or negative
biases) and their general magnitudes. The coverage needs and
accuracy requirements of each data manager will dictate whether
satellite-derived Ca are of sufficient quality for use in water quality
monitoring of Chesapeake Bay. These obligations will further deter-
mine the optimal geophysical algorithms, processing approaches,
and binning strategies (e.g., Level-2 or Level-3) to be applied. We
propose that the spatially and temporally rich data streams from
ocean color satellites have potential to improve both our scientific
understanding of coastal processes and our ability to monitor
Chesapeake Bay marine resources, provided their uncertainties can
be rigorously quantified.
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