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ABSTRACT

Ocean color satellites provide a mechanism for studying the marine biosphere on temporal and spatial scales
otherwise unattainable via conventional in situ sampling methods. These satellites measure visible and infrared
radiances, which are used to estimate additional geophysical data products, such as the concentration of the
phytoplankton pigment chlorophyll a, Ca, via the application of secondary bio-optical algorithms. The op-
erational Ca algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution
Imaging Spectroradiometer (MODIS), for example, perform well in the global open ocean, but often degrade
in more optically complex coastal environments where global parameterizations are less applicable. Organiza-
tions such as the Chesapeake Bay Program, which have interest in using SeaWiFS and MODIS data products
to facilitate regional monitoring activities, must rely on locally parameterized algorithms to achieve requisite
accuracies. To facilitate algorithm selection, the NASA Ocean Biology Processing Group recently developed the
infrastructure to spatially and temporally evaluate a long-term regional time-series of satellite observations using
in situ measurements as ground-truth. Here, we present this approach using a case study in the Chesapeake Bay,
where a series of Ca algorithms and atmospheric correction schemes were evaluated for the full SeaWiFS and
MODIS-Aqua time-series. We demonstrate how the selection of the best algorithms and processing approaches
is driven by trade-offs in coverage needs and relative accuracy requirements. While our case study highlights Ca

in the Chesapeake Bay, our methodology is applicable to any geophysical data product and region of interest.
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1. INTRODUCTION

Coastal and estuarine waters host a diverse array of benthic and pelagic ecosystems, many of which possess
significant commercial and ecological value. Both natural and anthropogenic disturbances, such as sea-level rise,
erosion, and industrial and agricultural pollution, alter the biogeochemical characteristics of these ecosystems,
frequently resulting in changes in water quality and local habitat structures. Our understanding of how coastal
environments respond to such perturbations currently relies on the analysis of long-term (e.g., decadal) time-series
of in situ measurements, for example, the Water Quality Monitoring Data1 collected as part of the Chesapeake
Bay Program (CBP) since 1984. The CBP, a cooperative effort between the federal government and state and
local governments within the Chesapeake Bay watershed, established 49 stations within the mainstem Bay to
be revisited monthly to measure 19 hydrographic and chemical water quality parameters. These data currently
provide the scientific foundation for the management of many Chesapeake Bay marine resources.

Ocean color satellites provide a means of complementing field programs with remotely sensed data collected on
spatial and temporal scales unachievable by conventional in situ methods. These satellites measure the radiance
emanating from the top-of-the-atmosphere at discrete visible and infrared wavelengths. Spectral water-leaving
radiances, Lw(λ), the light backscattered out of the water mass, are obtained by removing the contribution of
the atmosphere from the total signal (a process hereafter referred to as atmospheric correction).2 The Lw(λ)
are subsequently used to estimate a number of geophysical data parameters, such as the concentration of the
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phytoplankton pigment chlorophyll a, Ca, and marine absorption and scattering coefficients, via the application
of secondary bio-optical algorithms.3, 4

The standard bio-optical algorithms of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate
Resolution Imaging Spectroradiometer aboard the Aqua spacecraft (MODISA) perform well in the open ocean,
but often degrade in optically complex coastal environments.5 These algorithms use empirical correlations
derived from global in situ data sets and, therefore, best describe only the average relationship between Lw and
the geophysical data parameter. They cannot account for systematic differences in the bio-optical relationship
that may temporarily or permanently exist in certain geographic zones. Organizations such as the CBP, which
have interest in using SeaWiFS and MODISA data products to facilitate their regional monitoring activities,
therefore, often rely on locally parameterized algorithms to achieve their defined accuracy requirements.

In response to such needs, the NASA Ocean Biology Processing Group (OBPG) recently developed the infras-
tructure to spatially and temporally evaluate long-term regional time-series of satellite observations to quantify
local algorithm performance, using in situ measurements as ground-truth. Here, we present this approach using a
case study in the Chesapeake Bay, where a series of Ca algorithms and atmospheric correction schemes are eval-
uated for the full SeaWiFS and MODISA time-series. We begin with a brief review of two typical Ca algorithmic
forms, followed by an explanation of satellite and in situ data acquisition and preparation. We then describe
a series of satellite-derived Ca evaluation metrics and analyses, accompanied by example results. Ultimately,
we demonstrate how the selection of the best algorithms and processing approaches is driven by trade-offs in
coverage needs and relative accuracy requirements. While our case study highlights Ca in the Chesapeake Bay,
it is important to note that this methodology is widely applicable to any geophysical data product and region
of interest.

2. BIO-OPTICAL ALGORITHMS

Typically, bio-optical algorithms adopt one of two forms: empirical expressions that are derived through the
statistical correlation of coincident in situ radiometry and a biogeochemical product of interest; or semi-analytical
expressions, where a simplified form of the radiative transfer equation is inverted to retrieve the product of
interest. A myriad of examples exist for both forms, all of which maintain their own strengths and weaknesses
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Figure 1. Chesapeake Bay Ca shown as a function of its corresponding Rrs maximum band ratio (defined in the manuscript
text). The globally parameterized OC3 and regionally tuned OC3-CB are indicated by the thin and thick lines, respectively.
With regards to the derivation of OC3-CB, the sample size (N) and root mean square error (RMSE; the root of the residual
mean square, in units equal to that of the observation) are also provided.
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Table 1. Coefficients for OC3.

c0 c1 c2 c3 c4

OC3 (SeaWiFS) 0.2409 -2.4768 1.5296 0.1061 -1.1077

OC3 (MODISA) 0.2254 -2.6354 1.8071 0.0063 -1.2931

OC3-CB -0.0208 -3.1263 0.9575

for coastal remote sensing. Here, we present results for both types of algorithms, but for brevity, only include
one globally tuned and one regionally parameterized example of each. A brief description of the specific Ca

algorithms under consideration follows.

The operational MODISA empirical Ca algorithm, OC3, is the polynomial best fit when relating log-
transformed Ca to a log-transformed ratio of remote sensing reflectances, Rrs (the ratio of Lw to downwelling
surface irradiance):

log10(Ca) = c0 +
N∑

i=1

ci log10

(
Rrs(λb)
Rrs(λg)

)
(1)

In Eq. (1), λb is the greater of Rrs(443) and Rrs(488) and λg is Rrs(551). Note that 490 and 555-nm are used in
lieu of 488 and 551-nm, respectively, in the SeaWiFS version of OC3. The coefficients ci are provided in Table 1,
and were statistically derived using a global in situ set of coincident Ca and Rrs.3 For comparison, we derived a
Chesapeake Bay-specific expression, OC3-CB, using a similar data set6 with stations limited to those inside the
Bay or just outside the mouth of the Bay (Figure 1).

In contrast, the semi-analytical approach relates spectral inherent optical properties to radiances via a poly-
nomial expansion of the spectral ratio bb/(a+ bb), where a(λ) and bb(λ) are the marine absorption and backscat-
tering coefficients, respectively.7 These spectral coefficients are commonly partitioned into components via
(a = aw + aφ + adg) and (bb = bbw + bbp), where the subscripts w, φ, dg, and p indicate water (known), phy-
toplankton, non-phytoplankton particles + dissolved organics, and total particles, respectively. Note that the
adg combination cannot currently be decomposed into its two components via remote sensing methods. In the
Garver-Siegel-Maritorena4 model (GSM), for example, the components are further expanded into:

aφ(λ) = Ca a∗
φ(λ), (2)

adg(λ) = adg(443) exp [−S(λ − 443)] , (3)

bbp(λ) = bbp(443) (λ/443)−η, (4)

where a∗
φ is the Ca-specific absorption coefficient, S is the spectral decay constant for dg absorption, and η is

the power-law exponent for the particulate backscattering coefficient. In GSM, these three terms are assigned
constant values. Using the spectral satellite radiances as input, the Levenberg-Marquardt nonlinear least-squares
procedure is employed to solve for the remaining unknown terms, namely Ca, adg(443), and bbp(443). As for
OC3, the operational constants in Eqs. (2) − (4) were derived using a global in situ data set. For comparison, we
also consider the regionally and seasonally parameterized version of this algorithm, GSM-CB, that is presented
in Magnuson and co-authors.8
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Table 2. Thresholds for spatial and temporal stratification.

Spatial (Latitude) Temporal (Day Numbers)

Upper Bay > 38.6◦N Spring 80 − 172

Middle Bay 37.6◦ − 38.6◦N Summer 173 − 266

Lower Bay < 37.6◦N Fall 267 − 355

Winter 1 − 79, 356 − 365

3. DATA ACQUISITION AND PREPARATION

3.1 Satellite data

Approximately 3,000 MODISA and 6,200 SeaWiFS extracted Level-1A files containing all or part of the Bay
were acquired from the online OBPG Data Processing System (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl).
Both data sets provide ∼1.1 km2 spatial resolution at nadir (SeaWiFS data were limited to Merged Local Area
Coverage files). We considered the full time-series for both sensors, specifically June 2002 to March 2007 for
MODISA and September 1997 to March 2007 for SeaWiFS. The satellite extract files were made slightly larger
than the Bay (35.5 to 40.5◦N and -77.5 to -72.5◦W) to facilitate subsequent offshore analyses.

Level-2 files were generated using MSL12 version 5.6.2 (http://oceancolor.gsfc.nasa.gov/DOCS/MSL12/).
We initially applied the operational atmospheric correction scheme,2 including the corrections for near infrared
water-leaving radiances, bi-directional reflectance, and spectral band-pass effects.9, 10 The Gordon and Wang2

approach uses two near-infrared (NIR) radiances for aerosol type selection. An alternative approach that uses
two shortwave infrared (SWIR) radiances11 was also considered, the rationale for which will be discussed later.
The operational pixel-masking scheme for each sensor was adopted, with the exception that pixels with stray
light contamination were retained.10 We generated one Level-2 file for each candidate Ca product, such that
the Ca-specific Level-2 flags were associated solely with that algorithm. We also generated Level-2 files with
Lw(λ), the downwelling diffuse attenuation coefficient at 490-nm, the aerosol optical thickness at 865-nm, and
GSM-derived a(443) and bb(443).

Prior to data analysis, we applied quality control metrics to the satellite files to ensure that only the most
reliable data would be considered. We first applied an automated screening mechanism. Scenes were eliminated
if: (a) any pixel within the Bay had a satellite zenith angle greater than 54◦ (the confidence limit for the
atmospheric correction); or (b) fewer than 25% of all Bay pixels were cloud free, as determined by the Level-
2 cloud and ice flag. We then visually inspected the remaining scenes to determine their suitability for this
analysis. In general, we removed scenes with large off-Bay cloud fronts or sporadic, discontinuous Bay coverage
(also resulting from irregular, but significant cloud cover). In the end, 1,107 SeaWiFS and 537 MODISA files
remained for our analyses, or approximately nine days of data per month for each sensor.

3.2 In situ data

We acquired approximately 15,750 discrete fluorometric Ca samples collected by participants in the CBP.1

These data were supplemented with approximately 2,300 independent fluorometric Ca samples collected as part
of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies Program12

(SIMBIOS; Figure 2). With regards to the latter, high performance liquid chromatography (HPLC) samples were
also available, but reserved for subsequent analyses to minimize methodological biases between the two data sets.
Given the turbidity of the Bay, and resulting shallow optical depths, only near-surface samples were considered
(those collected no deeper than 1-meter). Replicate samples were averaged. Additional details regarding the
treatment of the in situ data are provided in Werdell and Bailey.6
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3.3 Data stratification and post-processing

Given its spatial and temporal variability, we regionally and seasonally stratified the Bay following Magnuson
and co-authors8 prior to comparing the satellite and in situ Ca (Figure 2, Table 2). The Chesapeake Bay has a
known annual cycle of phytoplankton, including a progression of dominant species. This stratification precluded
the combination of, for example, the winter-spring bloom (diatom-rich) with the summer maxima (picoplankton-
rich), which would otherwise complicate interpretation of our results.13 Spatially and temporally variant sources
of terrestrially derived dissolved and particulate matter further confound the bio-optical properties of the Bay.14

We generated regional histograms and time-series as vehicles for comparing the satellite and in situ Ca data.
Only retrievals within 0.001 < Ca ≤ 100 mg m−3 were considered, as, in general, this is the effective operational
range of the algorithms under considerations.3 For the in situ data, only 24 of the 18,000 available stations had
values greater than 100 mg m−3. On the contrary, 52 and 8 stations had Ca less than 1.0 and 0.3 mg m−3,
respectively. The lowest in situ Ca recorded was 0.17 mg m−3. When spatially stratifying the satellite data,
we further excluded retrievals when sample sizes for a given region were less than 200 valid (unmasked) marine
pixels. The histograms were generated in lognormal space with a bin size of 0.05. For the satellite time-series,
we recorded the mean, median, standard deviation, and sample size of all valid marine pixels for each geographic
region for each scene. We later used these values to calculate weighted monthly averages (via the sample sizes).
For comparison, we calculated the monthly mean, median, and standard deviation of all in situ stations. The use
of monthly averages improved visual clarity in these plots and, in general, eliminated anomalous Ca retrievals.

For each Ca data product, coincident Level-2 satellite and in situ values were statistically compared using the
OBPG satellite data product validation system.5 Briefly, we retained their temporal threshold for coincidence
of ± 3-hours. Satellite Ca values were determined as the filtered median of all valid pixels within a 5x5 pixels
box centered on the in situ target. Satellite pixel exclusion criteria and additional satellite homogeneity tests
are graphically described in Figure 1 of Bailey and Werdell.5

-78˚

-78˚

-77˚

-77˚

-76˚

-76˚

-75˚

-75˚

37˚ 37˚

38˚ 38˚

39˚ 39˚

40˚ 40˚

Upper

Middle

Lower

Figure 2. Locations of in situ Ca within the Chesapeake Bay and boxes denoting our adopted regional designations. The
CBP1 and SIMBIOS12 data sets are indicated by empty and filled circles, respectively.
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4. DATA ANALYSIS

Here, we discuss the analyses proposed in Subsection 3.3, describing their relative diagnostic capabilities for
algorithm evaluation. For several, we limit the introduction of results to those for either SeaWiFS or MODISA,
or for a specific Chesapeake Bay region or season. As our primary purpose is the presentation of the OBPG
regional data processing and analysis infrastructure, a detailed interpretation of results is beyond the scope of
this document. Rather, we outline the strengths and weaknesses of the analyses as they relate to the coastal
remote sensing and marine resource management paradigms.

4.1 Spatial coverage

An examination of the spatial extent of valid satellite retrievals provides an elementary means of determining
the utility of a remote sensing algorithm. Naturally, the particular needs of the resource manager dictate
the minimum acceptable spatial coverage and its associated frequency of recurrence. Within the mainstem
Chesapeake Bay, the empirical algorithms return a greater number of valid Level-2 (daily) pixels than the semi-
analytical approaches, as the latter fail in the presence of negative Lw at any wavelength (Figure 3). Note, we
continue to consider only retrievals within 0.001 < Ca ≤ 100 mg m−3 to be valid, and clouds equally confound
both algorithmic forms. Negative Lw commonly occur in the presence of absorbing aerosols, which currently
cannot be detected by the atmospheric correction process. This misinterpretation of aerosol type leads to
underestimates of blue Lw, where the signals are already low because of high adg (and aφ to a lesser degree)
in that spectral region. With regards to Level-2 spatial coverage, the empirical algorithms perform better, as
they return viable Ca when only 488 and 555-nm are available. These sample size differences will be evident
throughout the analyses presented in Section 4.

With regards to increasing spatial coverage, two other points merit discussion. First, the regionally param-
eterized versions of each algorithm return an increased number of Ca within 0.001 to 100 mg m−3 (Figure 3).
These algorithms were developed using regional in situ data, leading to realistic algorithm boundary conditions,
whereas their global counterparts were developed using data atypical of the Bay. Second, the spatial and tem-
poral aggregation15 of the Level-2 data into Level-3 monthly averages equalizes the relative spatial coverage of
the empirical and semi-analytical algorithms. Considering the ten SeaWiFS Level-2 scenes from April 2006, for
example, GSM-CB returns valid Ca for an average of 45% of available cloud-free ocean pixels. When Level-3
data are generated at 2 and 4-km spatial resolution using these ten daily files, the percentages rise to 65 and
75%, respectively. Such binning may be useful for regional managers without constraints on temporal and spatial
resolution. While we provide results for Level-3 files generated at 2 and 4-km resolution in our latter example,
a full discussion of resolution choices in Level-3 binning is beyond the scope of this document.

Figure 3. Typical spatial coverage for OC3-CB, GSM-CB, and GSM (from left to right). Black pixels indicate land,
clouds, and invalid Ca retrievals. Grey pixels indicate valid retrievals. OC3 is not shown as its coverage mimics that of
OC3-CB. SeaWiFS collected these data on 18 April 2006, which was cloud-free over the Bay.
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4.2 Level-2 satellite-to-in situ validation

The comparison of coincident satellite and ground truth (e.g., in situ) observations provides a simple, independent
means of determining the accuracy and precision of the satellite data products. Within the Bay, the global OC3
and GSM algorithms maintain significant positive and negative biases, respectively, both of which disappear
after the application of their regionally-parameterized counterparts (Figure 4). The regional algorithms also
show reduced absolute median percent differences relative to the in situ measurements. Note that the positive
OC3 bias is consistent with that reported by Harding and co-authors.16

While these results meet expectations, our interpretation is truly valid for only the range of environmental
conditions under which the ”matchups” were acquired (e.g., relative water turbidity and solar and satellite
geometries). Unfortunately, our results are hampered by diminutive sample sizes, despite the spread of matchup
stations throughout the full mainstem Bay. Recall, we applied the global exclusion criteria and thresholds of the
operational OBPG validation system, rather than optimizing these parameters for a turbid estuary. Conceivably,
a 5x5 satellite pixel box is inappropriately large, or the ± 3-hours temporal coincidence threshold too restrictive
for such an analysis. Bailey and Werdell5 statistically justified the global optimization, and our ongoing Bay-
specific parameterizations have adopted a similarly conscientious approach. Following our above example, while
Bay patchiness might dictate, for example, a 3x3 pixel box, the uncertainty about the mean Ca that has been
derived from valid pixels within this box will increase in accordance with the decreased sample size.

4.3 Distributions

Comparison of frequency distributions provide a mechanism for revealing relative biases and differences in dy-
namic ranges amongst multiple coincident data sets. Here, coincidence is defined only through season and region,
which differs from the Level-2 validation approach presented in the preceding Subsection. For the scenario pre-
sented in Figure 5, histogram analyses of the in situ data show Ca to be lognormally distributed within the
various Bay regions and seasons, with well-defined dynamic ranges. Despite their sample sizes being inherently
larger, the remotely sensed Ca have similarly shaped distributions, with the exception of GSM-CB. The latter
returns an increased number of low (< 1 mg m−3) and high (> 100 mg m−3) Ca, effectively flattening its his-
togram. The similar histogram widths of OC3, OC3-CB, and GSM suggest the breadth of their dynamic range
to be consistent, however, OC3 and GSM show positive and negative biases, which is consistent with results
presented in Subsection 4.2. In the Lower and Middle Bays, the regionally tuned OC3-CB and GSM-CB show
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Figure 4. MODISA satellite-to-in situ validation results for the globally (filled circles) and regionally-parameterized (empty
squares) versions of OC3 and GSM. Validation statistics for the global and regional algorithms are presented in the upper-
left and lower-right corners, respectively, of each panel, where MPD indicates the absolute median percent difference and
Ratio the mean satellite-to-in situ ratio.
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Table 3. Absolute median percent differences between MODISA and in situ Ca for each season and Bay region. Bold type
indicates the minimum difference for scenario. N presents the in situ sample size.

N OC3 OC3-CB GSM GSM-CB

Spring 1208 85.7 63.8 85.2 63.4

Upper Summer 1364 44.4 20.8 119.2 3.3

Bay Fall 374 100.6 75.0 64.6 82.4

Winter 717 91.7 68.2 79.9 62.8

Spring 1752 65.4 39.8 104.0 33.9

Middle Summer 1986 51.3 24.6 78.5 58.1

Bay Fall 808 76.3 45.1 87.8 24.7

Winter 1268 91.0 65.4 85.9 45.4

Spring 1993 65.7 33.0 95.6 38.1

Lower Summer 2532 45.2 10.6 75.6 58.5

Bay Fall 1142 45.6 6.1 115.9 9.4

Winter 1537 85.6 54.2 111.5 45.9

little bias in comparison to the in situ data, at least with regards to their modes. All of the algorithms under
consideration misrepresent the Upper Bay.

We calculated the absolute median percent differences, MPD, between the satellite-derived and in situ Ca for
each season and Bay region (Table 3). In this calculation, the geometric means for each scenario are compared,
which is prudent given the unimodal symmetry of the lognormally transformed data and the proximity of these
values to the distribution modes. Per scenario, the lowest MPD is achieved by a regional algorithm, with
the exception of the Upper Bay in the Fall. Further, the Middle and Lower Bays in the Summer are the
only other scenarios where a global algorithm outperforms a regional algorithm (OC3 and GSM-CB in both
cases). Regionally, GSM-CB has the lowest MPD in the Upper and Middle Bays, despite its broad frequency
distributions, while OC3-CB has the lowest MPD in the Lower Bay. For all scenarios, GSM-CB maintains
approximately half the sample size of OC3-CB (data not shown).

4.4 Time-series

Time-series comparisons simultaneously display relative biases and seasonal differences amongst multiple coin-
cident data sets. Here, we again define coincidence broadly by Bay region and season. While not desirable,
given the needs of a particular data manager, a temporally consistent bias might be qualitatively acceptable
if the remote sensing time-series adequately reproduces the local seasonal patterns of the ground truth data.
Conceptually, consistent biases are statistically removable via the application of constant offsets. As alluded to
in Subsection 3.3, the use of monthly averages in our time-series analyses improved their clarity and, in gen-
eral, eliminated anomalous Ca retrievals. We explored the use of alternate filtering and statistical smoothing
techniques, however, for brevity, they will not be discussed in this paper.

For the Middle Bay, for example, the positive and negative biases of OC3 and GSM, respectively, are again
evident in monthly comparisons of satellite-derived and in situ Ca (Figures 6 and 7). Unfortunately, these
biases are too large to clearly demonstrate comparable seasonal patterns with the in situ data (suggesting that
a constant offset would not align the Ca). In contrast, OC3-CB and GSM-CB show little bias in comparison
to the in situ data and similar seasonal patterns with few exceptions (e.g., April 2003 ). Further, their MPD
decrease relative to their global counterparts (note that values shown in Figure 6B and 7B reiterate the values
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presented in Table 3). While the sample sizes for GSM-CB significantly exceed those for GSM, they still trail
those for the empirical algorithms by approximately 50%.

5. DISCUSSION

The NASA OBPG recently developed the infrastructure to rapidly process and analyze long-term regional time-
series of remotely sensed data products. The system is completely independent of satellite sensor, geographic
region, and biogeophysical data product, so long as the processing scheme and related algorithms have been
incorporated into the OBPG Level-2 processing software MSl12. While in situ data typically provide ground
truth, the system also permits satellite-to-satellite, satellite-to-model, and satellite-to-climatology comparisons.
In this paper, we present the approach using a Ca-based case study in the Chesapeake Bay. To facilitate regional
monitoring activities, the OBPG recently partnered with the CBP to evaluate the quality of SeaWiFS and
MODISA Ca retrievals in the Bay using in situ data as ground truth.

A comprehensive discussion of results exceeds the scope of this paper, as our primary intent is the presentation
of data analysis approaches, accompanied by a description of the benefits and limitations of each. We consider
only four bio-optical algorithms with a single atmospheric correction scheme in Section 4, but stress that a
myriad of alternate atmospheric correction options and in-water algorithms are available, all with their own
strengths and weaknesses. For example, Wang and Shi11 propose that the use of SWIR radiances in lieu of NIR
radiances improves identification of aerosol type and concentration in turbid waters. The Gordon and Wang2

atmospheric correction approach requires two Lw(λ) = 0, a condition met by Lw(SWIR) in turbid water, but
not by Lw(NIR). Unfortunately, the on-orbit calibration of the SWIR detectors is less reliable than that for the
NIR because of severely low signal-to-noise ratios.

Despite the limited results presented in Section 4, several emerging “lessons learned” merit discussion. First,
consider the significant differences in spatial coverage for our candidate empirical and semi-analytical Ca algo-
rithms. Data managers with interest in GSM-CB, either for its reasonable accuracy (see, e.g., Figure 4 and
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Figure 5. In situ (thick lines) and MODISA-derived Ca distributions in the Lower, Middle, and Upper Chesapeake Bay.
The global (thin dashed) and regional (thin solid) versions of OC3 (top row) and GSM (bottom row) are both presented,
and data from all four seasons are included.
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Table 3) or ability to simultaneously estimate adg(λ) and bbp(λ), sacrifice considerable daily spatial coverage in
comparison to the empirical algorithms. The generation of Level-3 products increases relative spatial coverage,
but sacrifices both temporal resolution (from near-daily to weekly or monthly) and spatial resolution (from pixel
widths of approximately 1 to 2 or 4-km). The particular coverage needs and accuracy requirements of the data
manager inevitably determine the optimal geophysical algorithms and processing approaches.

Next, results from our specific case study suggest that the standard Ca algorithms employed by SeaWiFS
and MODISA benefit from regional parameterization. While it is unreasonable to directly extend this result to
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Figure 6. (A) Monthly averages of Ca in the Middle Bay for the in situ data set (filled circles) and the MODISA global
OC3 (solid line) and GSM (dashed line). The vertical bars represent one standard deviation about the in situ averages.
(B) Absolute median percent differences (MPD) between the satellite and in situ Ca and number of satellite observations
(N) for OC3 (squares and solid line, respectively) and GSM (crosses and dashed line, respectively).
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Figure 7. (A) Monthly averages of Ca in the Middle Bay for the in situ data set (filled circles) and the MODISA regional
OC3-CB (solid line) and GSM-CB (dashed line). The vertical bars represent one standard deviation about the in situ
averages. (B) Absolute median percent differences (MPD) between the satellite and in situ Ca and number of satellite
observations (N) for OC3-CB (squares and solid line, respectively) and GSM-CB (crosses and dashed line, respectively).
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Figure 8. Radiometric validation results for SeaWiFS, with statistics as defined in the Figure 4 caption.

other water masses, we suspect that the quality of those algorithms tuned largely to open ocean measurements
will consistently degrade in more optically complex (e.g., coastal) regimes. Regional algorithm tuning, however,
is only possible with an abundance of high quality in situ data. In the absence of such data, quantification of
algorithm accuracy, precision, and overall uncertainty is still possible via the analyses presented above. In some
cases, the statistical evaluation of these results provides sufficient information for regional algorithm adjustment
(e.g., the removal of temporally consistent biases or offsets). Alternatively, other remotely sensed products
occasionally provide reasonable surrogates for the geophysical product of interest. In our Chesapeake Bay study,
we found a reasonable correlation between remotely sensed a(443) and in situ Ca, which is not surprising given
the maximum Ca absorption peak at this wavelength (results not shown). While not elaborately discussed in
this paper, the need for regional parameterization also extends to the atmospheric correction scheme and to the
aerosol types embedded into this scheme (most of which are tuned to maritime rather than urban or coastal
conditions).

Finally, the relative quality of the remotely sensed Ca, as well as that of other secondary products, depends
largely on the quality of the input Lw(λ), which varies significantly from sensor to sensor. Evaluation of satellite
radiometric retrievals within the Chesapeake Bay is difficult, however, because of a paucity of coincident, high
quality in situ data. Radiometric measurements are not made as part of the CBP Water Quality Monitoring
program, so we are limited to those collected as part of SIMBIOS.12 Despite the limited number of measurements,
SeaWiFS appears to perform well in the Lower Bay (Figure 8). Unfortunately, insufficient data were available to
retrieve valid MODISA matchups in the Bay. With regards to the analyses presented in Section 4, the relative
differences in SeaWiFS and MODISA-derived Ca (not shown) appear because of differences in their respective
Lw(λ). Recent OBPG SeaWiFS-to-MODISA comparisons, described in Franz and co-authors,17 indicate that
the 3 - 5% differences found in Lw(λ) translate to 10 - 20% differences in eutrophic Ca (> 1 mg m−3, typical of
that in the Bay). We do not presuppose one sensor to be superior to the other, but rather, simply reveal that
differences in the remotely sensed Ca exist and predominantly result from the radiometric characterization of
each instrument (rather than their respective Ca algorithms).

Ultimately, the data streams from ocean color satellites have the potential to improve both our scientific
understanding of coastal processes and our ability to manage delicate marine resources, if their uncertainties can
be rigorously quantified. The ability to rapidly process and evaluate long-term regional time-series of remotely
sensed geophysical data products, as described herein, should facilitate significant progress towards this goal.

ACKNOWLEDGMENTS
We thank Michael Mallonee, David Jasinski, and Mark Trice for their advice and assistance with the CBP Water
Quality Monitoring data. We also thank Charles McClain, Shawna Karlson, Kevin Sellner, Chris Kinkade, Eric
Stengel, Michael Ondrusek, Chris Brown, and the OBPG Data Processing staff for their valuable comments and
suggestions at various stages of this project.

11

Proc. of SPIE Vol. 6680  66800G-11



REFERENCES
1. Chesapeake Bay Program, Guide to Using Chesapeake Bay Program Water Quality Monitoring Data,

CBP/TRS 78/92, Chesapeake Bay Program, Annapolis, Maryland, 1993.
2. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the

oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443–452, 1994.
3. J. E. O’Reilly and 24 co-authors, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, NASA

Tech. Memo. 206892 Vol. 11, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000.
4. S. Maritorena, D. A. Siegel, and A. Peterson, “Optimization of a semianalytical ocaen color model for

global-scale applications,” Appl. Opt. 41, 2705–2714, 2002.
5. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite

data products,” Rem. Sens. Environ. 102, 12–23, 2006.
6. P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development

and satellite data product validation,” Rem. Sens. Environ. 23, 122–140, 2005.
7. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent

optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427, 1975.
8. A. Magnuson, L. W. Harding Jr., M. E. Mallonee, and J. Adolf, “Bio-optical model for Chesapeake Bay

and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424, 2004.
9. A. Morel, D. Antoine, and B. Gentilli, “Bidirectional reflectance of oceanic waters: accounting for Ramen

emission and varying particle scattering phase fuction,” Appl. Opt. 41, 6289–6306, 2002.
10. F. S. Patt and 17 co-authors, Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, NASA Tech.

Memo. 206892 Vol. 22, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003.
11. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along

the east coast of the U.S.: Two case studies,” Geophys. Res. Let. , doi:10.1029/2005GL022917, 2005.
12. L. W. Harding Jr. and A. Magnuson, “Bio-optical and remote sensing observations in Chesapeake Bay,” in

SIMBIOS Project 2003 Annual Report, G. S. Fargion and C. R. McClain, eds., 84–97, NASA Tech. Memo.
212251, (NASA Goddard Space Flight Center, Greenbelt, Maryland), 2003.

13. L. W. Harding Jr., M. E. Mallonee, and E. S. Perry, “Toward a predictive understanding of primary
productivity in a temperate, partially stratified estuary,” Estuar. Coast. Shelf Sci. 55, 437–463, 2002.

14. C. L. Gallegos, T. Jordon, A. Hines, and D. Weller, “Temporal variability of optical properties in a shallow,
eutrophic estuary: seasonal and interannual variability,” Estuar. Coast. Shelf Sci. 64, 156–170, 2005.

15. IOCCG, Guide to the Creation and Use of Ocean-Colour Level-3, Binned Data Products, Reports of the
International Ocean-Colour Coordinating Group, No. 4, IOCCG, Dartmouth, Canada, 2004.

16. L. W. Harding Jr., A. Magnuson, and M. E. Mallonee, “SeaWiFS retrievals of chlorophyll in Chesapeake
Bay and the mid-Atlantic Bight,” Estuar. Coast. Shelf Sci. 62, 75–94, 2005.

17. B. A. Franz and 9 co-authors, “The continuity of ocean color measurements from SeaWiFS to MODIS,”
Proc. SPIE 5882, doi:10.1117/12.620069, 2005.

12

Proc. of SPIE Vol. 6680  66800G-12


